Transportation infrastructure upgrading and green development efficiency: Empirical analysis with double machine learning method

多重共线性 可持续发展 实证研究 环境经济学 中国 交通基础设施 可持续运输 运输工程 绿色增长 业务 计算机科学 持续性 经济 工程类 回归分析 法学 哲学 政治学 机器学习 认识论 生物 生态学
作者
Shuai Ling,Shurui Jin,Haijie Wang,Zhenhua Zhang,Yanchao Feng
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:358: 120922-120922 被引量:39
标识
DOI:10.1016/j.jenvman.2024.120922
摘要

In order to deal with the environmental problems such as pollution emissions and climate change, sustainable development in the field of transportation has gradually become a hot topic to all sectors of society. In addition, promoting the green and low-carbon transformation of China's transportation is also an important issue in the new era. Thus, it is particularly important to correctly identify the green effect of high-speed rail. However, the traditional causal reasoning model faces several challenges such as 'dimensional curse' and multicollinearity. Based on the panel data of 283 prefecture-level cities in China from 2003 to 2019, this study uses the double machine learning model to explore the impact of transportation infrastructure upgrading on the efficiency of urban green development in China. The research shows that the upgrading of transportation infrastructure can effectively improve the efficiency of urban green development by 4%. Service industry agglomeration and green innovation are verified as two mediating channels. Moreover, the synthetic difference in difference model is employed to evaluate the regional impact of high-speed rail, and finds that the regional impact of transportation policies often exceeds the impact of individual cities. We further apply the conclusions of this paper to the research at the micro enterprise level. Goodman-Bacon decomposition and a variety of robustness tests confirm the validity of our conclusions. The study's comprehensive empirical analysis not only validates the positive effects of transportation upgrades on green development, but also offers novel insights into the underlying mechanisms and policy implications of transportation upgrading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
HXia完成签到 ,获得积分10
5秒前
8秒前
乐乐应助柒柒采纳,获得30
16秒前
16秒前
科研通AI2S应助小和采纳,获得10
18秒前
FashionBoy应助小和采纳,获得10
18秒前
科研通AI2S应助小和采纳,获得10
18秒前
Yeung完成签到 ,获得积分10
19秒前
Gloria发布了新的文献求助10
19秒前
勤劳高跟鞋完成签到,获得积分10
23秒前
28秒前
PAD完成签到,获得积分10
28秒前
慕青应助你倒是发啊采纳,获得10
34秒前
Xu发布了新的文献求助50
34秒前
35秒前
Akim应助称心的水蓉采纳,获得30
36秒前
Vizz发布了新的文献求助10
40秒前
嘉心糖发布了新的文献求助200
41秒前
43秒前
hym完成签到,获得积分10
45秒前
清脆的老虎完成签到,获得积分20
46秒前
50秒前
xiaomeng完成签到 ,获得积分10
50秒前
51秒前
wangjinuli完成签到 ,获得积分10
52秒前
ljhtxf完成签到,获得积分10
52秒前
53秒前
HUSHIYI发布了新的文献求助10
57秒前
58秒前
叶琳完成签到 ,获得积分10
1分钟前
大黄柿子完成签到,获得积分10
1分钟前
wanci应助Vizz采纳,获得10
1分钟前
生物小白完成签到,获得积分10
1分钟前
1分钟前
1分钟前
GQC发布了新的文献求助10
1分钟前
pj发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
Mercury and Silver Mining in the Colonial Atlantic 300
Studi sul Vicino Oriente antico dedicati alla memoria di Luigi Cagni vol.1 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3374827
求助须知:如何正确求助?哪些是违规求助? 2991428
关于积分的说明 8745853
捐赠科研通 2675331
什么是DOI,文献DOI怎么找? 1465569
科研通“疑难数据库(出版商)”最低求助积分说明 677898
邀请新用户注册赠送积分活动 669536