微流变学
材料科学
辣根过氧化物酶
自愈水凝胶
介电谱
电阻式触摸屏
羧甲基纤维素
流变学
电导
分析物
生物传感器
过氧化氢
催化作用
电阻抗
生物电子学
电容感应
化学工程
分析化学(期刊)
纳米技术
电极
电化学
高分子化学
有机化学
色谱法
物理化学
复合材料
计算机科学
化学
数学
酶
工程类
操作系统
冶金
计算机视觉
组合数学
电气工程
钠
作者
Sebastian Pütz,Meriem Kassar,Claude Oelschlaeger,Matthias Franzreb,Gözde Kabay
标识
DOI:10.1002/adfm.202316469
摘要
Abstract Despite the critical role of hydrogels in material science and biotechnology, current methods for analyzing their formation lack real‐time monitoring and require complex sample preparation and instrumentation. In this work, an innovative methodology is introduced for the real‐time analysis of enzymatically catalyzed hydrogelation. Electrochemical impedance spectroscopy (EIS) coupled with interdigitated electrodes (IDEs) to sense and transduce the gelation reaction of model precursor carboxymethyl cellulose‐tyramine (CMC‐TA) conjugates that undergoes enzymatic cross‐linking by horseradish peroxidase (HRP) and hydrogen peroxide (H 2 O 2 ). Real‐time monitoring involves single‐frequency analyses at 3 × 10 5 Hz, where the measured impedance consists solely of a resistive component, and the admittance equates to solution conductance. The gelation trajectories for all tested enzymatically cross‐linked hydrogel component combinations are determined by substituting the conductance data in the modified Michaelis–Menten kinetic model. Specifically, for CMC‐TA cross‐linked by HRP, the authors calculate apparent K M and k cat values of 82.1 µM and 95.5 s −1 , respectively. These findings are further validated through rheological characterization, including oscillatory shear measurements and microrheology. Overall, this research paves the way for a streamlined, accurate, and cost‐effective approach to controllable enzymatically initiated hydrogel synthesis, enhancing their successful application in various fields ranging from material science to biotechnology.
科研通智能强力驱动
Strongly Powered by AbleSci AI