Knowledge Tracing with Soft Labels Via Knowledge Distillation and IRT-Based Modeling

计算机科学 追踪 蒸馏 人工智能 人机交互 色谱法 程序设计语言 化学
作者
Yan Yu,Zheng Guan,Xue Wang,Yanyou Wei,Zhijun Yang
标识
DOI:10.1109/eebda60612.2024.10486040
摘要

Knowledge tracing models capture student knowledge status through student learning records and predict student performance in the future. Currently popular deep knowledge tracing models are labeled by the rightness or wrongness of a student's answer, ignoring the impact of information such as scores, question difficulty, and individual ability, and using 0 and 1 as labels is too absolute. To this problem, we propose a knowledge tracing model (KDKT) that utilizes knowledge distillation to provide soft labels. The model uses the IRT model as a teacher model to provide interpretable parameters, and then the Rasch measurements to calculate the student's ability value for the corresponding question as soft labels. Secondly, the question information is labeled as difficulty to do self-attention embedded pre-training, and then combined with the answer information is input into the long and short-term memory (LSTM) network for prediction. Enriching the embedding of question information while ensuring that sequential information is not compromised. We conducted numerous experiments on three public benchmark datasets and the results show that our model outperforms other classical knowledge tracing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xixihaha发布了新的文献求助10
刚刚
赘婿应助认真新筠采纳,获得10
刚刚
2秒前
3秒前
哈哈hehe发布了新的文献求助20
3秒前
cm发布了新的文献求助10
3秒前
4秒前
4秒前
大个应助可乐采纳,获得10
5秒前
tdtk发布了新的文献求助10
6秒前
valley发布了新的文献求助30
6秒前
zzl完成签到,获得积分10
6秒前
he完成签到,获得积分10
6秒前
7秒前
琪凯定理完成签到,获得积分10
7秒前
7秒前
风帆展发布了新的文献求助10
8秒前
共享精神应助xixihaha采纳,获得10
10秒前
无私从雪关注了科研通微信公众号
10秒前
10秒前
11秒前
milly发布了新的文献求助10
11秒前
11秒前
云澈完成签到,获得积分10
11秒前
13秒前
13秒前
cm完成签到,获得积分10
14秒前
万能图书馆应助不安太阳采纳,获得10
14秒前
14秒前
ab发布了新的文献求助10
15秒前
15秒前
16秒前
zzh关闭了zzh文献求助
16秒前
16秒前
Rita发布了新的文献求助10
16秒前
17秒前
kk应助繁荣的行天采纳,获得10
17秒前
小赵发布了新的文献求助10
17秒前
超超完成签到,获得积分10
18秒前
丘比特应助哈哈hehe采纳,获得20
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953141
求助须知:如何正确求助?哪些是违规求助? 3498499
关于积分的说明 11092224
捐赠科研通 3229097
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869255
科研通“疑难数据库(出版商)”最低求助积分说明 801415