磁性
凝聚态物理
单层
联轴节(管道)
声子
自旋(空气动力学)
材料科学
物理
纳米技术
热力学
冶金
作者
Shuo Zhang,Yunfei Zhang,Minghao Jia,Chang Pu,Lixiu Guan,Junguang Tao
出处
期刊:2D materials
[IOP Publishing]
日期:2024-04-10
卷期号:11 (3): 035004-035004
标识
DOI:10.1088/2053-1583/ad3ceb
摘要
Abstract Exploring intrinsic two-dimensional (2D) ferromagnetic (FM) semiconductors with high Curie temperatures ( T c ) is an ongoing challenge. Herein, we found that the phonons of monolayer H-VS 2 are strongly coupled to the magnetic ordering with the spin-phonon coupling constants (15.80 cm −1 for A 1 g and 78.72 cm −1 for E 2 g 1 ) an order of magnitude larger than most other 2D materials, which restricts structural reconstruction of FM ground state through spin interactions. Based on anharmonic model, the variation trend of phonon energy with temperature clearly demonstrates FM ground state at room temperature. The theoretically predicted high T c of 303 K, closely in line with experimental observations, is correlated to the three lowest d -orbitals ( i.e. d x y , d z 2 and d x 2 − y 2 ) split by the unique crystal field. The proximity of their energy levels facilitates efficient mutual virtual exchanges, which greatly prompts superexchange-driven FM coupling of adjacent spins, as confirmed by their orbital-resolved magnetic exchange coefficients. Our work validates the double-orbital model for the magnetic coupling mechanisms in 2D H-VS 2 , offers potentials to create novel high T c spintronic semiconductors and paves a way for design of complex micro/nano-magnetoelectric devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI