WPS:A whole phenology-based spectral feature selection method for mapping winter crop from time-series images

物候学 系列(地层学) 选择(遗传算法) 特征选择 特征(语言学) 遥感 作物 模式识别(心理学) 地图学 计算机科学 地理 人工智能 林业 农学 生物 哲学 语言学 古生物学
作者
Man Liu,Wei He,Hongyan Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:210: 141-159
标识
DOI:10.1016/j.isprsjprs.2024.03.005
摘要

Accurately obtaining the spatial distribution and planting patterns of crops is very important for agricultural planning and food security. At present, time-series images have been proved to be an effective tool to characterize crop seasonal growth patterns, and identifying crop information by measuring the time-series similarity between unknown classes and known crop phenology curves is also considered to be a useful way. However, the existing methods of selecting feature ignore the connection between each phenological stage of crops and the unique growth rules of the whole phenology, which makes it difficult to select time-series spectral features that are potentially important for crop mapping. In order to make up for this problem, a Whole Phenology-based Spectral Feature Selection (WPS) method was proposed. The aim was to select the time-series feature sets with great differences among winter crops from a large number of spectral features, so as to improve the mapping accuracy of winter rapeseed and winter wheat. Firstly, spectral separability between all classes is calculated. Secondly, the key phenological periods of winter crops were selected according to the importance of temporal features, and the spectral feature sets with high separability were selected according to the key phenological periods. Finally, a Time-weighted Dynamic Time Warping (TWDTW) algorithm was used to generate the winter rapeseed and winter wheat maps of two cities in the middle and lower reaches of the Yangtze River. The mapping accuracy of the two crops is more than 92%, which matches the crop planting area well. The research shows that combining the WPS method with the TWDTW mapping method has great potential to accurately map crop types based on satellite time-series images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HEIKU应助Liu采纳,获得10
2秒前
FashionBoy应助xiaozhou采纳,获得10
2秒前
thchiang完成签到 ,获得积分10
3秒前
迷糊蛋发布了新的文献求助10
4秒前
伶俐问薇完成签到,获得积分10
7秒前
11秒前
knowledge159应助sdysdbd采纳,获得30
12秒前
迷糊蛋完成签到,获得积分20
14秒前
15秒前
丘比特应助lll采纳,获得10
15秒前
打工维完成签到,获得积分10
15秒前
Spring完成签到 ,获得积分10
16秒前
17秒前
董小李完成签到,获得积分10
18秒前
卢健辉完成签到,获得积分10
19秒前
刘一三完成签到 ,获得积分10
19秒前
pwy完成签到,获得积分10
20秒前
123发布了新的文献求助10
23秒前
所所应助儒雅老太采纳,获得10
29秒前
30秒前
sidegate应助纸飞机采纳,获得10
30秒前
深情安青应助淡淡的可仁采纳,获得10
32秒前
34秒前
Li发布了新的文献求助10
35秒前
饱满一刀完成签到,获得积分10
35秒前
35秒前
36秒前
36秒前
陈可霖完成签到,获得积分10
37秒前
MHbb完成签到 ,获得积分10
37秒前
37秒前
xiaoyemao发布了新的文献求助10
38秒前
40秒前
陈可霖发布了新的文献求助10
42秒前
lll发布了新的文献求助10
42秒前
46秒前
47秒前
英俊的铭应助威武的亦竹采纳,获得10
47秒前
乐观的颦发布了新的文献求助30
50秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164130
求助须知:如何正确求助?哪些是违规求助? 2814873
关于积分的说明 7906891
捐赠科研通 2474467
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631841
版权声明 602228