WPS:A whole phenology-based spectral feature selection method for mapping winter crop from time-series images

物候学 系列(地层学) 选择(遗传算法) 特征选择 特征(语言学) 遥感 作物 模式识别(心理学) 地图学 计算机科学 地理 人工智能 林业 农学 生物 古生物学 语言学 哲学
作者
Man Liu,Wei He,Hongyan Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:210: 141-159 被引量:12
标识
DOI:10.1016/j.isprsjprs.2024.03.005
摘要

Accurately obtaining the spatial distribution and planting patterns of crops is very important for agricultural planning and food security. At present, time-series images have been proved to be an effective tool to characterize crop seasonal growth patterns, and identifying crop information by measuring the time-series similarity between unknown classes and known crop phenology curves is also considered to be a useful way. However, the existing methods of selecting feature ignore the connection between each phenological stage of crops and the unique growth rules of the whole phenology, which makes it difficult to select time-series spectral features that are potentially important for crop mapping. In order to make up for this problem, a Whole Phenology-based Spectral Feature Selection (WPS) method was proposed. The aim was to select the time-series feature sets with great differences among winter crops from a large number of spectral features, so as to improve the mapping accuracy of winter rapeseed and winter wheat. Firstly, spectral separability between all classes is calculated. Secondly, the key phenological periods of winter crops were selected according to the importance of temporal features, and the spectral feature sets with high separability were selected according to the key phenological periods. Finally, a Time-weighted Dynamic Time Warping (TWDTW) algorithm was used to generate the winter rapeseed and winter wheat maps of two cities in the middle and lower reaches of the Yangtze River. The mapping accuracy of the two crops is more than 92%, which matches the crop planting area well. The research shows that combining the WPS method with the TWDTW mapping method has great potential to accurately map crop types based on satellite time-series images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小唐发布了新的文献求助10
1秒前
卷心菜发布了新的文献求助10
2秒前
wzh完成签到 ,获得积分10
4秒前
YSY完成签到,获得积分10
7秒前
刘浩然发布了新的文献求助10
7秒前
坦率的傲芙完成签到,获得积分10
7秒前
陌欣冉完成签到 ,获得积分10
8秒前
SilentLight发布了新的文献求助200
13秒前
科研通AI6应助Loeop采纳,获得10
13秒前
ROMANTIC完成签到 ,获得积分10
15秒前
16秒前
xiaozhejia完成签到,获得积分10
18秒前
20秒前
sniper发布了新的文献求助10
22秒前
大花完成签到 ,获得积分10
22秒前
万信心完成签到,获得积分10
22秒前
慕青应助科研通管家采纳,获得10
23秒前
那时花开应助科研通管家采纳,获得10
23秒前
萧布完成签到,获得积分10
23秒前
无花果应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
共享精神应助科研通管家采纳,获得10
23秒前
田様应助科研通管家采纳,获得10
23秒前
BareBear应助科研通管家采纳,获得10
23秒前
23秒前
绿色催化完成签到,获得积分10
23秒前
黑眼圈完成签到 ,获得积分10
24秒前
yellow完成签到,获得积分10
24秒前
LL完成签到,获得积分10
25秒前
jias发布了新的文献求助10
26秒前
smalldesk发布了新的文献求助10
26秒前
万能图书馆应助刘浩然采纳,获得10
29秒前
29秒前
29秒前
30秒前
30秒前
30秒前
30秒前
30秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378585
求助须知:如何正确求助?哪些是违规求助? 4502996
关于积分的说明 14014893
捐赠科研通 4411620
什么是DOI,文献DOI怎么找? 2423429
邀请新用户注册赠送积分活动 1416338
关于科研通互助平台的介绍 1393765