Optimising Swarm Robotic Navigation: A Comparative Analysis of Fastest Path vs. Nearest Neighbour Path Projection Strategies

群体行为 路径(计算) 计算机科学 投影(关系代数) 最近的邻居 人工智能 计算机视觉 算法 计算机网络
作者
Zain Ali,Kevin Meehan,Jennifer Hyndman,Thomas C. Dowling
标识
DOI:10.1109/aics60730.2023.10470717
摘要

Swarm robotic systems hold the potential to revo-lutionise various fields by executing complex tasks collectively. Efficient navigation remains a pivotal challenge that can significantly impact the performance and applicability of swarm robotic systems. This study delves into exploring two distinct path projection strategies, namely the Fastest Time/First Path to the Goal and the Nearest Neighbour methods, to optimise the navigation of a swarm of Kilobots towards a designated goal. Through a series of experiments, each strategy's efficiency and time effectiveness are thoroughly analysed and compared. The Fastest Time/First Path to the Goal strategy endeavours to minimize the time taken by having subsequent Kilobots follow the trail of the quickest Kilobot to reach the goal. On the other hand, the Nearest Neighbour strategy, utilizing the Euclidean Path Cost Estimation technique, aims at projecting the path with the minimum overall cost for Kilobots to follow, promoting a cost-effective navigation approach. The findings reveal that the Nearest Neighbour strategy emerges as a more balanced and efficient approach, thereby presenting substantial promise for further research in swarm robotics navigation. The insights gathered from this study have implications for the application of swarm robotics in dynamic and varied environmental conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助易寒采纳,获得10
2秒前
温暖砖头完成签到,获得积分10
2秒前
G.Huang完成签到,获得积分10
3秒前
所所应助hhhan采纳,获得10
4秒前
4秒前
小元发布了新的文献求助10
6秒前
陈星颖完成签到 ,获得积分10
6秒前
7秒前
可可萝oxo发布了新的文献求助10
10秒前
Menand给Menand的求助进行了留言
10秒前
干净青亦发布了新的文献求助10
11秒前
雨木木完成签到,获得积分10
11秒前
12秒前
taro完成签到,获得积分10
13秒前
科研通AI2S应助小元采纳,获得10
14秒前
15秒前
16秒前
楼迎荷发布了新的文献求助10
17秒前
情怀应助ily.采纳,获得10
18秒前
19秒前
深情安青应助David采纳,获得10
19秒前
xx发布了新的文献求助10
22秒前
海鸥发布了新的文献求助10
23秒前
lllllria完成签到,获得积分10
23秒前
英俊的铭应助甜蜜的盼秋采纳,获得10
24秒前
25秒前
26秒前
白綀完成签到 ,获得积分10
27秒前
我是老大应助油麦菜采纳,获得10
27秒前
28秒前
情怀应助banimadao采纳,获得10
29秒前
上官若男应助天选采纳,获得10
30秒前
bkagyin应助Tigher采纳,获得10
30秒前
32秒前
Kuhn_W发布了新的文献求助200
32秒前
32秒前
phl发布了新的文献求助30
32秒前
hahaha发布了新的文献求助10
32秒前
33秒前
unqiue驳回了Jasper应助
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313770
求助须知:如何正确求助?哪些是违规求助? 2946123
关于积分的说明 8528435
捐赠科研通 2621703
什么是DOI,文献DOI怎么找? 1434019
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650679