Transformers in Medical Domain: Swin Transformer as a Binary Classification Model for Pneumonia

变压器 计算机科学 医学 工程类 电气工程 电压
作者
Alen Bhandari,Sule Yildirim Yayilgan,Sarang Shaikh
出处
期刊:Lecture notes in networks and systems 卷期号:: 226-245
标识
DOI:10.1007/978-3-031-53960-2_16
摘要

Pneumonia disease is a significant worldwide health problem, where accurate and timely diagnosis is crucial for effective treatment. Recently, transformer-based models have shown increasing interest in various domains including natural language processing and computer vision. In this study, we have proposed to use Swin Transformer model, a state-of-the-art model for developing a binary classification model for pneumonia detection using medical chest x-ray images. The proposed model uses the self-attention approach to understand global and local features in the images which leads to enhanced feature representation. The proposed model is also helpful to learn hierarchical representations which improves the accuracy and robustness of pneumonia classification resulting into more accurate, timely diagnosis and intervention. Furthermore, to evaluate the performance of the proposed model we compared its performance results with the EfficientNetB0 model by using traditional performance evaluation metrics such as precision, recall, Area-Under-the Curve (AUC), etc. The dataset used for this study is publicly available dataset having chest x-ray images labelled as normal or pneumonia. The results from our proposed approach shows the promising ability of capturing efficient features leading to accurate and reliable pneunomia classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助ayu采纳,获得10
刚刚
完美世界应助景飞丹采纳,获得10
刚刚
starry完成签到,获得积分10
刚刚
1秒前
小丘2024完成签到,获得积分10
1秒前
PingLiu发布了新的文献求助10
2秒前
3秒前
3秒前
weixun发布了新的文献求助10
3秒前
Natasha完成签到,获得积分10
3秒前
淳之风发布了新的文献求助10
3秒前
搜集达人应助识南采纳,获得10
3秒前
3秒前
勤劳亦瑶应助幸福大白采纳,获得10
4秒前
orixero应助幸福大白采纳,获得10
4秒前
迢迢笙箫应助幸福大白采纳,获得30
4秒前
共享精神应助幸福大白采纳,获得10
4秒前
烟花应助幸福大白采纳,获得10
4秒前
领导范儿应助专注的可乐采纳,获得10
4秒前
丹曦完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
starry发布了新的文献求助10
6秒前
Natasha发布了新的文献求助30
6秒前
ws完成签到,获得积分10
7秒前
7秒前
7秒前
明理千雁发布了新的文献求助10
8秒前
lyon完成签到,获得积分10
8秒前
细心寒凡发布了新的文献求助10
9秒前
LL完成签到 ,获得积分10
9秒前
潇湘雪月发布了新的文献求助10
10秒前
香蕉觅云应助嘻嘻子采纳,获得10
10秒前
11秒前
电池高手完成签到,获得积分10
12秒前
12秒前
CipherSage应助半芹采纳,获得10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150003
求助须知:如何正确求助?哪些是违规求助? 2801002
关于积分的说明 7843063
捐赠科研通 2458575
什么是DOI,文献DOI怎么找? 1308544
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721