亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multimorbidity Analysis of Hospitalized Patients With COVID-19 in Northwest Italy: Longitudinal Study Using Evolutionary Machine Learning and Health Administrative Data

多发病率 医学诊断 流行病学 医学 2019年冠状病毒病(COVID-19) 疾病 大流行 公共卫生 共病 药方 数据科学 计算机科学 传染病(医学专业) 病理 药理学
作者
Dayana Benny,Mario Giacobini,Alberto Catalano,Giuseppe Costa,Roberto Gnavi,Fulvio Ricceri
出处
期刊:JMIR public health and surveillance [JMIR Publications Inc.]
卷期号:10: e52353-e52353
标识
DOI:10.2196/52353
摘要

Background Multimorbidity is a significant public health concern, characterized by the coexistence and interaction of multiple preexisting medical conditions. This complex condition has been associated with an increased risk of COVID-19. Individuals with multimorbidity who contract COVID-19 often face a significant reduction in life expectancy. The postpandemic period has also highlighted an increase in frailty, emphasizing the importance of integrating existing multimorbidity details into epidemiological risk assessments. Managing clinical data that include medical histories presents significant challenges, particularly due to the sparsity of data arising from the rarity of multimorbidity conditions. Also, the complex enumeration of combinatorial multimorbidity features introduces challenges associated with combinatorial explosions. Objective This study aims to assess the severity of COVID-19 in individuals with multiple medical conditions, considering their demographic characteristics such as age and sex. We propose an evolutionary machine learning model designed to handle sparsity, analyzing preexisting multimorbidity profiles of patients hospitalized with COVID-19 based on their medical history. Our objective is to identify the optimal set of multimorbidity feature combinations strongly associated with COVID-19 severity. We also apply the Apriori algorithm to these evolutionarily derived predictive feature combinations to identify those with high support. Methods We used data from 3 administrative sources in Piedmont, Italy, involving 12,793 individuals aged 45-74 years who tested positive for COVID-19 between February and May 2020. From their 5-year pre–COVID-19 medical histories, we extracted multimorbidity features, including drug prescriptions, disease diagnoses, sex, and age. Focusing on COVID-19 hospitalization, we segmented the data into 4 cohorts based on age and sex. Addressing data imbalance through random resampling, we compared various machine learning algorithms to identify the optimal classification model for our evolutionary approach. Using 5-fold cross-validation, we evaluated each model’s performance. Our evolutionary algorithm, utilizing a deep learning classifier, generated prediction-based fitness scores to pinpoint multimorbidity combinations associated with COVID-19 hospitalization risk. Eventually, the Apriori algorithm was applied to identify frequent combinations with high support. Results We identified multimorbidity predictors associated with COVID-19 hospitalization, indicating more severe COVID-19 outcomes. Frequently occurring morbidity features in the final evolved combinations were age>53, R03BA (glucocorticoid inhalants), and N03AX (other antiepileptics) in cohort 1; A10BA (biguanide or metformin) and N02BE (anilides) in cohort 2; N02AX (other opioids) and M04AA (preparations inhibiting uric acid production) in cohort 3; and G04CA (Alpha-adrenoreceptor antagonists) in cohort 4. Conclusions When combined with other multimorbidity features, even less prevalent medical conditions show associations with the outcome. This study provides insights beyond COVID-19, demonstrating how repurposed administrative data can be adapted and contribute to enhanced risk assessment for vulnerable populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助陈杰采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得30
29秒前
Yau完成签到,获得积分10
1分钟前
1分钟前
陈杰发布了新的文献求助10
1分钟前
pluto应助陈杰采纳,获得10
2分钟前
2分钟前
2分钟前
ZJR发布了新的文献求助10
2分钟前
huyx发布了新的文献求助10
2分钟前
yishan完成签到,获得积分10
2分钟前
GRATE完成签到 ,获得积分10
3分钟前
xiaofeiyan完成签到 ,获得积分10
3分钟前
星辰大海应助科研通管家采纳,获得10
4分钟前
jyy应助科研通管家采纳,获得10
4分钟前
4分钟前
辛勤千筹发布了新的文献求助20
4分钟前
陈杰完成签到,获得积分10
4分钟前
zsmj23完成签到 ,获得积分0
6分钟前
8分钟前
luckyalias完成签到 ,获得积分10
8分钟前
ppapppap发布了新的文献求助10
8分钟前
ppapppap完成签到,获得积分20
8分钟前
wangermazi完成签到,获得积分10
9分钟前
脑洞疼应助Cassel采纳,获得10
9分钟前
10分钟前
Cassel发布了新的文献求助10
10分钟前
桐桐应助科研通管家采纳,获得10
10分钟前
传奇3应助科研通管家采纳,获得10
12分钟前
耳与总完成签到,获得积分10
14分钟前
Sandy完成签到,获得积分10
15分钟前
科研通AI2S应助cc采纳,获得10
16分钟前
18分钟前
彭于晏应助科研通管家采纳,获得10
18分钟前
如意竺完成签到,获得积分10
19分钟前
19分钟前
19分钟前
20分钟前
LLL完成签到,获得积分10
20分钟前
jyy完成签到,获得积分10
20分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126163
求助须知:如何正确求助?哪些是违规求助? 2776302
关于积分的说明 7729792
捐赠科研通 2431786
什么是DOI,文献DOI怎么找? 1292236
科研通“疑难数据库(出版商)”最低求助积分说明 622664
版权声明 600408