A Multimorbidity Analysis of Hospitalized Patients With COVID-19 in Northwest Italy: Longitudinal Study Using Evolutionary Machine Learning and Health Administrative Data

多发病率 医学诊断 流行病学 医学 2019年冠状病毒病(COVID-19) 疾病 大流行 公共卫生 共病 药方 数据科学 计算机科学 传染病(医学专业) 病理 药理学
作者
Dayana Benny,Mario Giacobini,Alberto Catalano,Giuseppe Costa,Roberto Gnavi,Fulvio Ricceri
出处
期刊:JMIR public health and surveillance [JMIR Publications]
卷期号:10: e52353-e52353
标识
DOI:10.2196/52353
摘要

Background Multimorbidity is a significant public health concern, characterized by the coexistence and interaction of multiple preexisting medical conditions. This complex condition has been associated with an increased risk of COVID-19. Individuals with multimorbidity who contract COVID-19 often face a significant reduction in life expectancy. The postpandemic period has also highlighted an increase in frailty, emphasizing the importance of integrating existing multimorbidity details into epidemiological risk assessments. Managing clinical data that include medical histories presents significant challenges, particularly due to the sparsity of data arising from the rarity of multimorbidity conditions. Also, the complex enumeration of combinatorial multimorbidity features introduces challenges associated with combinatorial explosions. Objective This study aims to assess the severity of COVID-19 in individuals with multiple medical conditions, considering their demographic characteristics such as age and sex. We propose an evolutionary machine learning model designed to handle sparsity, analyzing preexisting multimorbidity profiles of patients hospitalized with COVID-19 based on their medical history. Our objective is to identify the optimal set of multimorbidity feature combinations strongly associated with COVID-19 severity. We also apply the Apriori algorithm to these evolutionarily derived predictive feature combinations to identify those with high support. Methods We used data from 3 administrative sources in Piedmont, Italy, involving 12,793 individuals aged 45-74 years who tested positive for COVID-19 between February and May 2020. From their 5-year pre–COVID-19 medical histories, we extracted multimorbidity features, including drug prescriptions, disease diagnoses, sex, and age. Focusing on COVID-19 hospitalization, we segmented the data into 4 cohorts based on age and sex. Addressing data imbalance through random resampling, we compared various machine learning algorithms to identify the optimal classification model for our evolutionary approach. Using 5-fold cross-validation, we evaluated each model’s performance. Our evolutionary algorithm, utilizing a deep learning classifier, generated prediction-based fitness scores to pinpoint multimorbidity combinations associated with COVID-19 hospitalization risk. Eventually, the Apriori algorithm was applied to identify frequent combinations with high support. Results We identified multimorbidity predictors associated with COVID-19 hospitalization, indicating more severe COVID-19 outcomes. Frequently occurring morbidity features in the final evolved combinations were age>53, R03BA (glucocorticoid inhalants), and N03AX (other antiepileptics) in cohort 1; A10BA (biguanide or metformin) and N02BE (anilides) in cohort 2; N02AX (other opioids) and M04AA (preparations inhibiting uric acid production) in cohort 3; and G04CA (Alpha-adrenoreceptor antagonists) in cohort 4. Conclusions When combined with other multimorbidity features, even less prevalent medical conditions show associations with the outcome. This study provides insights beyond COVID-19, demonstrating how repurposed administrative data can be adapted and contribute to enhanced risk assessment for vulnerable populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lishen关注了科研通微信公众号
刚刚
1秒前
Rondab应助Luos采纳,获得10
3秒前
yx_cheng应助lilila666采纳,获得30
6秒前
8秒前
8秒前
9秒前
11秒前
Xiaoyang完成签到,获得积分10
11秒前
loski发布了新的文献求助10
11秒前
12秒前
虚心月饼发布了新的文献求助10
13秒前
14秒前
Lucas应助123采纳,获得10
16秒前
香蕉觅云应助KIORking采纳,获得10
17秒前
17秒前
Liufgui应助执着又蓝采纳,获得20
18秒前
18秒前
正直水池完成签到 ,获得积分10
18秒前
18秒前
阿克完成签到,获得积分10
18秒前
一方通行发布了新的文献求助10
19秒前
perovskite完成签到,获得积分10
19秒前
如梦如幻91完成签到,获得积分10
19秒前
19秒前
19秒前
妮露的修狗完成签到,获得积分10
20秒前
21秒前
22秒前
文献发布了新的文献求助30
24秒前
无花果应助我不吃胡萝卜采纳,获得10
25秒前
25秒前
26秒前
自信的电灯胆完成签到,获得积分20
26秒前
量子星尘发布了新的文献求助10
27秒前
28秒前
29秒前
清辉夜凝发布了新的文献求助10
29秒前
31秒前
少敏敏发布了新的文献求助10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173