A Multimorbidity Analysis of Hospitalized Patients With COVID-19 in Northwest Italy: Longitudinal Study Using Evolutionary Machine Learning and Health Administrative Data

多发病率 医学诊断 流行病学 医学 2019年冠状病毒病(COVID-19) 疾病 大流行 公共卫生 共病 药方 数据科学 计算机科学 传染病(医学专业) 病理 药理学
作者
Dayana Benny,Mario Giacobini,Alberto Catalano,Giuseppe Costa,Roberto Gnavi,Fulvio Ricceri
出处
期刊:JMIR public health and surveillance [JMIR Publications]
卷期号:10: e52353-e52353
标识
DOI:10.2196/52353
摘要

Background Multimorbidity is a significant public health concern, characterized by the coexistence and interaction of multiple preexisting medical conditions. This complex condition has been associated with an increased risk of COVID-19. Individuals with multimorbidity who contract COVID-19 often face a significant reduction in life expectancy. The postpandemic period has also highlighted an increase in frailty, emphasizing the importance of integrating existing multimorbidity details into epidemiological risk assessments. Managing clinical data that include medical histories presents significant challenges, particularly due to the sparsity of data arising from the rarity of multimorbidity conditions. Also, the complex enumeration of combinatorial multimorbidity features introduces challenges associated with combinatorial explosions. Objective This study aims to assess the severity of COVID-19 in individuals with multiple medical conditions, considering their demographic characteristics such as age and sex. We propose an evolutionary machine learning model designed to handle sparsity, analyzing preexisting multimorbidity profiles of patients hospitalized with COVID-19 based on their medical history. Our objective is to identify the optimal set of multimorbidity feature combinations strongly associated with COVID-19 severity. We also apply the Apriori algorithm to these evolutionarily derived predictive feature combinations to identify those with high support. Methods We used data from 3 administrative sources in Piedmont, Italy, involving 12,793 individuals aged 45-74 years who tested positive for COVID-19 between February and May 2020. From their 5-year pre–COVID-19 medical histories, we extracted multimorbidity features, including drug prescriptions, disease diagnoses, sex, and age. Focusing on COVID-19 hospitalization, we segmented the data into 4 cohorts based on age and sex. Addressing data imbalance through random resampling, we compared various machine learning algorithms to identify the optimal classification model for our evolutionary approach. Using 5-fold cross-validation, we evaluated each model’s performance. Our evolutionary algorithm, utilizing a deep learning classifier, generated prediction-based fitness scores to pinpoint multimorbidity combinations associated with COVID-19 hospitalization risk. Eventually, the Apriori algorithm was applied to identify frequent combinations with high support. Results We identified multimorbidity predictors associated with COVID-19 hospitalization, indicating more severe COVID-19 outcomes. Frequently occurring morbidity features in the final evolved combinations were age>53, R03BA (glucocorticoid inhalants), and N03AX (other antiepileptics) in cohort 1; A10BA (biguanide or metformin) and N02BE (anilides) in cohort 2; N02AX (other opioids) and M04AA (preparations inhibiting uric acid production) in cohort 3; and G04CA (Alpha-adrenoreceptor antagonists) in cohort 4. Conclusions When combined with other multimorbidity features, even less prevalent medical conditions show associations with the outcome. This study provides insights beyond COVID-19, demonstrating how repurposed administrative data can be adapted and contribute to enhanced risk assessment for vulnerable populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳无夜完成签到,获得积分10
2秒前
摆哥完成签到,获得积分10
6秒前
66完成签到,获得积分10
11秒前
zlqq完成签到 ,获得积分10
11秒前
Hardskills发布了新的文献求助10
14秒前
15秒前
之_ZH完成签到 ,获得积分10
23秒前
gds2021完成签到 ,获得积分10
25秒前
你好呀嘻嘻完成签到 ,获得积分10
25秒前
梅特卡夫完成签到,获得积分10
27秒前
熊雅完成签到,获得积分10
28秒前
30秒前
睡到自然醒完成签到 ,获得积分10
31秒前
cis2014完成签到,获得积分10
33秒前
独特的大有完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
36秒前
xingyi完成签到,获得积分10
38秒前
39秒前
舒心的秋荷完成签到 ,获得积分10
42秒前
zz123发布了新的文献求助10
43秒前
liaomr完成签到 ,获得积分10
43秒前
粗犷的灵松完成签到,获得积分10
44秒前
吃小孩的妖怪完成签到 ,获得积分10
44秒前
ncuwzq完成签到,获得积分10
46秒前
yshj完成签到 ,获得积分10
47秒前
49秒前
净禅完成签到 ,获得积分10
51秒前
53秒前
迷人的寒风完成签到,获得积分10
54秒前
54秒前
water应助科研通管家采纳,获得10
55秒前
Lucas应助HHHAN采纳,获得10
57秒前
无情修杰完成签到 ,获得积分10
58秒前
小柒完成签到 ,获得积分10
1分钟前
聪慧芷巧发布了新的文献求助10
1分钟前
1分钟前
1分钟前
蓝意完成签到,获得积分0
1分钟前
xiaohongmao完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022