已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Multimorbidity Analysis of Hospitalized Patients With COVID-19 in Northwest Italy: Longitudinal Study Using Evolutionary Machine Learning and Health Administrative Data

多发病率 医学诊断 流行病学 医学 2019年冠状病毒病(COVID-19) 疾病 大流行 公共卫生 共病 药方 数据科学 计算机科学 传染病(医学专业) 病理 药理学
作者
Dayana Benny,Mario Giacobini,Alberto Catalano,Giuseppe Costa,Roberto Gnavi,Fulvio Ricceri
出处
期刊:JMIR public health and surveillance [JMIR Publications]
卷期号:10: e52353-e52353
标识
DOI:10.2196/52353
摘要

Background Multimorbidity is a significant public health concern, characterized by the coexistence and interaction of multiple preexisting medical conditions. This complex condition has been associated with an increased risk of COVID-19. Individuals with multimorbidity who contract COVID-19 often face a significant reduction in life expectancy. The postpandemic period has also highlighted an increase in frailty, emphasizing the importance of integrating existing multimorbidity details into epidemiological risk assessments. Managing clinical data that include medical histories presents significant challenges, particularly due to the sparsity of data arising from the rarity of multimorbidity conditions. Also, the complex enumeration of combinatorial multimorbidity features introduces challenges associated with combinatorial explosions. Objective This study aims to assess the severity of COVID-19 in individuals with multiple medical conditions, considering their demographic characteristics such as age and sex. We propose an evolutionary machine learning model designed to handle sparsity, analyzing preexisting multimorbidity profiles of patients hospitalized with COVID-19 based on their medical history. Our objective is to identify the optimal set of multimorbidity feature combinations strongly associated with COVID-19 severity. We also apply the Apriori algorithm to these evolutionarily derived predictive feature combinations to identify those with high support. Methods We used data from 3 administrative sources in Piedmont, Italy, involving 12,793 individuals aged 45-74 years who tested positive for COVID-19 between February and May 2020. From their 5-year pre–COVID-19 medical histories, we extracted multimorbidity features, including drug prescriptions, disease diagnoses, sex, and age. Focusing on COVID-19 hospitalization, we segmented the data into 4 cohorts based on age and sex. Addressing data imbalance through random resampling, we compared various machine learning algorithms to identify the optimal classification model for our evolutionary approach. Using 5-fold cross-validation, we evaluated each model’s performance. Our evolutionary algorithm, utilizing a deep learning classifier, generated prediction-based fitness scores to pinpoint multimorbidity combinations associated with COVID-19 hospitalization risk. Eventually, the Apriori algorithm was applied to identify frequent combinations with high support. Results We identified multimorbidity predictors associated with COVID-19 hospitalization, indicating more severe COVID-19 outcomes. Frequently occurring morbidity features in the final evolved combinations were age>53, R03BA (glucocorticoid inhalants), and N03AX (other antiepileptics) in cohort 1; A10BA (biguanide or metformin) and N02BE (anilides) in cohort 2; N02AX (other opioids) and M04AA (preparations inhibiting uric acid production) in cohort 3; and G04CA (Alpha-adrenoreceptor antagonists) in cohort 4. Conclusions When combined with other multimorbidity features, even less prevalent medical conditions show associations with the outcome. This study provides insights beyond COVID-19, demonstrating how repurposed administrative data can be adapted and contribute to enhanced risk assessment for vulnerable populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
gcyyyds完成签到 ,获得积分10
1秒前
兜里没糖了完成签到 ,获得积分0
2秒前
TAOS完成签到 ,获得积分10
3秒前
5秒前
抠鼻公主完成签到 ,获得积分10
5秒前
6秒前
Shuhe_Gong完成签到 ,获得积分10
7秒前
发发发布了新的文献求助10
7秒前
ryanfeng完成签到,获得积分0
8秒前
9秒前
文静的可仁完成签到,获得积分10
9秒前
Haimian完成签到 ,获得积分10
9秒前
nk完成签到 ,获得积分10
12秒前
123456789完成签到,获得积分10
12秒前
dd发布了新的文献求助10
12秒前
dracovu完成签到,获得积分10
13秒前
Yy完成签到 ,获得积分10
14秒前
14秒前
克劳修斯完成签到 ,获得积分10
14秒前
Auralis完成签到 ,获得积分10
15秒前
13686682012发布了新的文献求助10
15秒前
土豪的新儿完成签到 ,获得积分10
15秒前
dax大雄完成签到 ,获得积分10
18秒前
18秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
发发发布了新的文献求助10
20秒前
晨晨完成签到 ,获得积分10
21秒前
杰哥完成签到 ,获得积分10
21秒前
糊涂的皮皮虾完成签到 ,获得积分10
23秒前
hhan发布了新的文献求助20
24秒前
碧蓝的夏天完成签到,获得积分10
24秒前
24秒前
刻苦藏今发布了新的文献求助30
25秒前
LArry发布了新的文献求助10
26秒前
十八完成签到 ,获得积分10
26秒前
LELE完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610218
求助须知:如何正确求助?哪些是违规求助? 4016237
关于积分的说明 12434819
捐赠科研通 3697797
什么是DOI,文献DOI怎么找? 2038994
邀请新用户注册赠送积分活动 1071906
科研通“疑难数据库(出版商)”最低求助积分说明 955582