Detection and prediction of anomalous behaviors of enterprise’s employees based on data-mining and optimization algorithm

计算机科学 数据挖掘 人工神经网络 构造(python库) 机器学习 人工智能 算法 程序设计语言
作者
Xiao Zhang,Yutong Meng
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-68315-9
摘要

Internal employees have always been at the core of organizational security management challenges. Once an employee exhibits behaviors that threaten the organization, the resulting damage can be profound. Therefore, analyzing reasonably stored behavioral data can equip managers with effective threat monitoring and warning solutions. Through data-mining, a knowledge graph for internal threat data is deduced, and models for detecting anomalous behaviors and predicting resignations are developed. Initially, data-mining is employed to model the knowledge ontology of internal threats and construct the knowledge graph; subsequently, using the behavioral characteristics, the BP neural network is optimized with the Sparrow Search Algorithm (SSA), establishing a detection model for anomalous behaviors (SBP); additionally, behavioral sequences are processed through data feature vectorization. Utilizing SBP, the LSTM network is further optimized, creating a predictive model for employee behaviors (SLSTM); ultimately, SBP detects anomalous behaviors, while SLSTM predicts resignation intentions, thus enhancing detection strategies for at-risk employees. The integration of these models forms a comprehensive threat detection technology within the organization. The efficacy and practicality of detecting anomalous behaviors and predicting resignations using SBP and SLSTM are demonstrated, comparing them with other algorithms and analyzing potential causes of misjudgment. This work has enhanced the detection efficiency and update speed of abnormal employee behaviors, lowered the misjudgment rate, and significantly mitigated the impact of internal threats on the organization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyuxilong完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
3秒前
ZZ完成签到,获得积分10
4秒前
背后的穆完成签到 ,获得积分10
5秒前
文静的柚子完成签到,获得积分10
5秒前
露露发布了新的文献求助20
8秒前
轻歌水越发布了新的文献求助10
9秒前
jou完成签到,获得积分10
9秒前
xpd发布了新的文献求助30
9秒前
bkagyin应助nickel采纳,获得10
9秒前
清逸之风完成签到 ,获得积分10
10秒前
大橘完成签到 ,获得积分10
11秒前
研友_VZG7GZ应助文静的柚子采纳,获得10
11秒前
谦让的慕凝完成签到 ,获得积分10
11秒前
北风完成签到,获得积分10
12秒前
Jerry20184完成签到 ,获得积分10
12秒前
咖啡博士完成签到,获得积分10
12秒前
一个左正蹬完成签到,获得积分10
13秒前
小灰灰完成签到 ,获得积分10
14秒前
hanliulaixi完成签到 ,获得积分10
14秒前
悠哉哉完成签到,获得积分10
14秒前
田様应助独特夜绿采纳,获得10
15秒前
16秒前
禾斗完成签到,获得积分10
16秒前
xpd完成签到,获得积分10
17秒前
奇奇奇很奇妙完成签到,获得积分10
17秒前
lezbj99发布了新的文献求助10
18秒前
18秒前
坚强志泽完成签到 ,获得积分10
18秒前
ned4speed完成签到,获得积分10
18秒前
19秒前
老肖应助18922406869采纳,获得30
21秒前
充电宝应助liuting采纳,获得10
21秒前
wo完成签到 ,获得积分10
22秒前
魏俏红完成签到,获得积分10
22秒前
23秒前
nickel发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798255
关于积分的说明 7827373
捐赠科研通 2454823
什么是DOI,文献DOI怎么找? 1306491
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565