Detection and prediction of anomalous behaviors of enterprise’s employees based on data-mining and optimization algorithm

计算机科学 数据挖掘 人工神经网络 构造(python库) 机器学习 人工智能 算法 程序设计语言
作者
Xiao Zhang,Yutong Meng
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-68315-9
摘要

Internal employees have always been at the core of organizational security management challenges. Once an employee exhibits behaviors that threaten the organization, the resulting damage can be profound. Therefore, analyzing reasonably stored behavioral data can equip managers with effective threat monitoring and warning solutions. Through data-mining, a knowledge graph for internal threat data is deduced, and models for detecting anomalous behaviors and predicting resignations are developed. Initially, data-mining is employed to model the knowledge ontology of internal threats and construct the knowledge graph; subsequently, using the behavioral characteristics, the BP neural network is optimized with the Sparrow Search Algorithm (SSA), establishing a detection model for anomalous behaviors (SBP); additionally, behavioral sequences are processed through data feature vectorization. Utilizing SBP, the LSTM network is further optimized, creating a predictive model for employee behaviors (SLSTM); ultimately, SBP detects anomalous behaviors, while SLSTM predicts resignation intentions, thus enhancing detection strategies for at-risk employees. The integration of these models forms a comprehensive threat detection technology within the organization. The efficacy and practicality of detecting anomalous behaviors and predicting resignations using SBP and SLSTM are demonstrated, comparing them with other algorithms and analyzing potential causes of misjudgment. This work has enhanced the detection efficiency and update speed of abnormal employee behaviors, lowered the misjudgment rate, and significantly mitigated the impact of internal threats on the organization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈镜子发布了新的文献求助10
刚刚
赖建琛完成签到 ,获得积分10
刚刚
yznfly应助科研欣路采纳,获得30
刚刚
昂口3完成签到 ,获得积分10
刚刚
1秒前
wuta完成签到,获得积分10
1秒前
2秒前
甜甜的曼荷完成签到,获得积分10
2秒前
boniu发布了新的文献求助10
2秒前
三石完成签到,获得积分10
3秒前
踏雪泥完成签到,获得积分10
4秒前
4秒前
轻松的访彤完成签到,获得积分10
4秒前
独特的思烟完成签到 ,获得积分10
4秒前
汉堡包应助大君哥采纳,获得10
5秒前
baobaonaixi完成签到,获得积分10
5秒前
爆米花应助wz采纳,获得10
5秒前
6秒前
研友_VZG7GZ应助高兴的牛排采纳,获得10
6秒前
7秒前
我的名字是山脉完成签到,获得积分10
7秒前
柳柳完成签到,获得积分10
8秒前
求知若渴完成签到,获得积分0
8秒前
min完成签到,获得积分10
8秒前
boniu完成签到,获得积分10
9秒前
9秒前
皖医梁朝伟完成签到 ,获得积分0
9秒前
长乐完成签到,获得积分10
10秒前
热心市民小红花应助马夋采纳,获得10
10秒前
九零后无心完成签到,获得积分10
11秒前
12秒前
13秒前
商山骑士完成签到 ,获得积分10
13秒前
14秒前
bonnieeee777完成签到,获得积分10
14秒前
Lee完成签到,获得积分10
14秒前
14秒前
思源应助文艺的芫采纳,获得20
14秒前
小胜完成签到 ,获得积分10
15秒前
花阳年华完成签到 ,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118