Study on transient cavitation performance of centrifugal pump based on the influence of rough impeller

叶轮 物理 离心泵 空化 瞬态(计算机编程) 机械 计算机科学 操作系统
作者
Jintong Gu,Huihui Sun,Yao Yuan,Qing Chen,Yong Zeng,Qian Lu,Shifeng Fu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (8)
标识
DOI:10.1063/5.0225721
摘要

This study employs numerical simulation to investigate the transient flow and cavitation performance of centrifugal pumps with rough impellers, validating the numerical method with experimental data. Initially, the effect of blade roughness on the external characteristics of centrifugal pumps is examined. Subsequently, the study specifically addresses the impact of roughness on internal flow characteristics during cavitation, including vapor volume distribution, three-dimensional vortex structures, and vorticity distribution in the impeller channel. Furthermore, the influence of blade roughness on local energy loss is analyzed using entropy production theory. Finally, several monitoring points are arranged in the impeller channel to assess pressure pulsation effects. The results show that blade roughness generally reduces the head and efficiency of centrifugal pumps. During the non-cavitation and cavitation incipient stages, roughness marginally increases the head, with a maximum increase in only 0.1%. Impeller roughness causes vacuole collapse and vortex structure enlargement, disrupting the stable flow path within the channel. Blade roughness also escalates energy loss within impeller components, particularly under full cavitation conditions, where the impeller's entropy production accounts for up to 50%. Pressure pulsation results reveal that while blade roughness can slightly suppress cavitation, it also disturbs the flow field pressure. These insights provide guidance and data support for mitigating roughness and cavitation, the two primary instability factors in centrifugal pump operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂奔的哈士奇完成签到,获得积分10
刚刚
小汪发布了新的文献求助10
刚刚
Sally完成签到,获得积分10
刚刚
酷波er应助Lunjiang采纳,获得10
2秒前
CatOS完成签到,获得积分10
3秒前
赶紧大聪明完成签到,获得积分10
3秒前
5秒前
陈xxxxxxxxxx发布了新的文献求助10
5秒前
5秒前
CipherSage应助复杂硬币采纳,获得10
6秒前
田様应助很多事罚款采纳,获得10
6秒前
fosca完成签到,获得积分10
7秒前
8秒前
小汪完成签到,获得积分10
10秒前
一二三四五完成签到,获得积分10
10秒前
勤劳半青完成签到,获得积分10
10秒前
大胆的问夏完成签到,获得积分10
11秒前
are发布了新的文献求助10
12秒前
smallfish完成签到,获得积分10
12秒前
12秒前
xhh完成签到,获得积分10
13秒前
常常完成签到,获得积分10
13秒前
14秒前
fuyue完成签到,获得积分10
14秒前
14秒前
李子木发布了新的文献求助10
14秒前
维尼完成签到,获得积分10
14秒前
无忧应助小子采纳,获得10
15秒前
liu bo完成签到,获得积分10
15秒前
16秒前
16秒前
隐形荟完成签到 ,获得积分10
16秒前
沙珠完成签到,获得积分10
16秒前
共享精神应助Hui_2023采纳,获得10
17秒前
17秒前
杨文磊完成签到,获得积分10
17秒前
蒜命师完成签到,获得积分10
17秒前
百合子完成签到,获得积分10
17秒前
羡鱼完成签到,获得积分10
17秒前
西米完成签到 ,获得积分10
18秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081744
求助须知:如何正确求助?哪些是违规求助? 2734831
关于积分的说明 7534536
捐赠科研通 2384276
什么是DOI,文献DOI怎么找? 1264252
科研通“疑难数据库(出版商)”最低求助积分说明 612606
版权声明 597600