A Deep-level Decomposed Model to Accelerate Hydraulic Simulations in Large Water Distribution Networks

计算 一致性(知识库) 计算机科学 比例(比率) 分解 加速度 过程(计算) 分布式计算 算法 人工智能 生态学 量子力学 经典力学 生物 操作系统 物理
作者
Shuyi Guo,Kunlun Xin,Tao Tao,Hexiang Yan
出处
期刊:Water Research [Elsevier]
卷期号:266: 122318-122318
标识
DOI:10.1016/j.watres.2024.122318
摘要

As the size of water distribution network (WDN) models continues to grow, developing and applying real-time models or digital twins to simulate hydraulic behaviors in large-scale WDNs is becoming increasingly challenging. The long response time incurred when performing multiple hydraulic simulations in large-scale WDNs can no longer meet the current requirements for the efficient and real-time application of WDN models. To address this issue, there is a rising interest in accelerating hydraulic calculations in WDN models by integrating new model structures with abundant computational resources and mature parallel computing frameworks. This paper presents a novel and efficient framework for steady-state hydraulic calculations, comprising a joint topology-calculation decomposition method that decomposes the hydraulic calculation process and a high-performance decomposed gradient algorithm that integrates with parallel computation. Tests in four WDNs of different sizes with 8 to 85,118 nodes demonstrate that the framework maintains high calculation accuracy consistent with EPANET and can reduce calculation time by up to 51.93 % compared to EPANET in the largest WDN model. Further investigation found that factors affecting the acceleration include the decomposition level, consistency of sub-model sizes and sub-model structures. The framework aims to help develop rapid-responding models for large-scale WDNs and improve their efficiency in integrating multiple application algorithms, thereby supporting the water supply industry in achieving more adaptive and intelligent management of large-scale WDNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
1秒前
2秒前
香蕉觅云应助blue采纳,获得10
3秒前
求求接收吧应助sjx采纳,获得10
3秒前
3秒前
3秒前
4秒前
5秒前
liuqian完成签到,获得积分10
5秒前
通辽小判官完成签到,获得积分10
5秒前
5秒前
6秒前
JamesPei应助你是千堆雪采纳,获得10
6秒前
李健的小迷弟应助keym采纳,获得10
6秒前
SYLH应助lin采纳,获得10
7秒前
热情醉山发布了新的文献求助10
8秒前
李明发布了新的文献求助10
8秒前
木子发布了新的文献求助10
9秒前
jianghs发布了新的文献求助10
9秒前
che发布了新的文献求助10
9秒前
乾明少侠完成签到 ,获得积分10
10秒前
12秒前
华仔应助fu采纳,获得10
12秒前
快乐滑板应助one采纳,获得10
13秒前
14秒前
cocolu应助Lee采纳,获得20
15秒前
Joker_Li完成签到,获得积分10
15秒前
王宇杰发布了新的文献求助10
16秒前
Lucas应助眼睛大的甜瓜采纳,获得10
16秒前
16秒前
17秒前
所所应助che采纳,获得10
18秒前
18秒前
WXHL发布了新的文献求助200
18秒前
852应助gbw123采纳,获得10
19秒前
19秒前
19秒前
21秒前
ccm发布了新的文献求助10
23秒前
26秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434140
求助须知:如何正确求助?哪些是违规求助? 3031366
关于积分的说明 8941708
捐赠科研通 2719312
什么是DOI,文献DOI怎么找? 1491703
科研通“疑难数据库(出版商)”最低求助积分说明 689455
邀请新用户注册赠送积分活动 685580