Data-Driven Tube-Based Robust Predictive Control for Constrained Wastewater Treatment Process

模型预测控制 过程(计算) 管(容器) 废水 控制理论(社会学) 工艺工程 计算机科学 控制(管理) 环境科学 工程类 废物管理 人工智能 环境工程 操作系统
作者
Honggui Han,Yan Wang,Haoyuan Sun,Zheng Liu,Junfei Qiao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tcyb.2024.3434499
摘要

The wastewater treatment process (WWTP) is characterized by unknown nonlinearity and external disturbances, which complicates the tracking control of dissolved oxygen concentration (DOC) within operational constraints. To address this issue, a data-driven tube-based robust predictive control (DTRPC) strategy is proposed to achieve stable tracking control of DOC and satisfy the system constraints. First, a tube-based robust predictive control (TRPC) strategy is designed to deal with system constraints and external disturbances. Specifically, a nominal controller is designed to ensure that the nominal output accurately tracks the set-point under tightened constraints, while an auxiliary feedback controller is designed to suppress disturbances and restore the nominal performance of the disturbed WWTP. Second, two fuzzy neural network identifiers are employed to provide accurate predictive outputs for the control process, overcoming the challenges of modeling the WWTP with strong nonlinearity and unknown dynamics. Third, the generalized multiplier method is utilized to solve the constrained optimization problem to obtain the nominal control law, and the gradient descent algorithm is used to obtain the auxiliary control law. The implementation of this composite controller ensures the satisfaction of the system constraints and the effective suppression of disturbances. Finally, the feasibility and stability of the proposed DTRPC strategy are guaranteed through rigorous theoretical analysis, and its effectiveness is demonstrated through the simulations on the benchmark simulation model No.1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuanjw发布了新的文献求助10
刚刚
肯德鸭完成签到,获得积分10
刚刚
一二完成签到,获得积分10
1秒前
1秒前
科研通AI5应助老杨采纳,获得10
1秒前
缓慢如南应助独特的舞仙采纳,获得10
1秒前
wqqwd完成签到,获得积分10
1秒前
音悦台完成签到,获得积分10
2秒前
2秒前
3秒前
Sandro发布了新的文献求助10
3秒前
3秒前
言三斤完成签到,获得积分10
3秒前
英姑应助Tycoon采纳,获得10
4秒前
阿木发布了新的文献求助10
4秒前
英俊的铭应助就好采纳,获得10
4秒前
无花果应助awoe采纳,获得10
5秒前
zyinger发布了新的文献求助10
5秒前
安静凡旋发布了新的文献求助10
5秒前
Veronica Mew完成签到 ,获得积分10
5秒前
5秒前
刘杨发布了新的文献求助10
5秒前
123完成签到,获得积分10
6秒前
6秒前
6秒前
Hello应助不挑食的Marcophages采纳,获得10
6秒前
7秒前
taozidetao发布了新的文献求助10
8秒前
悦耳剑身发布了新的文献求助10
8秒前
9秒前
Xin完成签到,获得积分10
9秒前
SYLH应助yuanjw采纳,获得10
9秒前
隐形曼青应助yuanjw采纳,获得10
9秒前
acadedog完成签到 ,获得积分10
9秒前
hcm发布了新的文献求助10
9秒前
Sandro完成签到,获得积分10
9秒前
33完成签到,获得积分10
9秒前
yduan发布了新的文献求助10
10秒前
苻人英完成签到,获得积分10
10秒前
无聊的骁关注了科研通微信公众号
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556386
求助须知:如何正确求助?哪些是违规求助? 3131978
关于积分的说明 9394071
捐赠科研通 2832007
什么是DOI,文献DOI怎么找? 1556617
邀请新用户注册赠送积分活动 726755
科研通“疑难数据库(出版商)”最低求助积分说明 716062