亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning analysis of contrast-enhanced ultrasound (CEUS) for the diagnosis of acute graft dysfunction in kidney transplant recipients

医学 超声造影 髓腔 超声波 逻辑回归 肌酐 肾功能 对比度(视觉) 放射科 泌尿科 内科学 计算机科学 人工智能
作者
Tudor Moisoiu,Alina Daciana Elec,Adriana Muntean,Alexandru Florin Badea,Anca Budusan,Bogdan Stancu,G. Iacob,A Oană,Alexandra Andries,Răzvan Zaro,Mihai Socaciu,Radu Badea,Gabriel C. Oniscu,Florin Ioan Elec
出处
期刊:Medical ultrasonography [SRUMB - Romanian Society for Ultrasonography in Medicine and Biology]
标识
DOI:10.11152/mu-4430
摘要

Aim: The aim of the study was to develop machine learning algorithms (MLA) for diagnosing acute graft dysfunction (AGD) in kidney transplant recipients based on contrast-enhanced ultrasound (CEUS) analysis of the graft.Materials and methods: This prospective study involved 71 patients with kidney transplant undergoing CEUS during follow-up. AGD wasdefined as an increase in serum creatinine levels of at least 25% compared to the baseline of the last three months. The control group consisted of patients with stable kidney graft function (SGF). The top five CEUS parameters that achieved the best discrimination between the AGD and SGF groups were selected based on ANOVA testing and then employed as input for training MLA (naïve Bayes (NB), k-nearest neighbors (k-NN), and logistic regression (LR)). The models were validated by leave-one-out cross-validation.Results: Among the 111 CEUS analyses, 21 corresponded to the AGD group and 90 to the SGF group. CEUS analyses yielded 44 parameters, from which five were selected: the wash out rate in segmental arteries,time to peak in segmental arteries, medullary mean transit time, renal mean transit time, and medullary time to fall. These five parameters were employed as input for MLA, yielding an AUROC of 0.68 for NB and k-NN and 0.72 for LR. The inclusion of graft survival in the MLA significantly improved discrimination accuracy, yielding an AUROC of 0.79 for NB, 0.76 for k-NN,and 0.81 for LR.Conclusions: The use of MLA represents a promising strategy for analyzing CEUS-derived parameters in the setting AGD.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟消云散完成签到,获得积分10
2秒前
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
机智的佳肴完成签到,获得积分10
10秒前
Estrella完成签到,获得积分10
18秒前
dawn发布了新的文献求助20
20秒前
Twonej应助Estrella采纳,获得30
24秒前
miki完成签到 ,获得积分10
34秒前
Orange应助YHF2采纳,获得10
44秒前
YAYING完成签到 ,获得积分10
56秒前
57秒前
Frank完成签到 ,获得积分10
59秒前
dawn完成签到,获得积分10
1分钟前
1分钟前
YHF2发布了新的文献求助10
1分钟前
YHF2完成签到,获得积分10
1分钟前
慕青应助sxj采纳,获得10
1分钟前
珈蓝完成签到,获得积分10
1分钟前
1分钟前
sxj发布了新的文献求助10
1分钟前
啊啊啊发布了新的文献求助10
1分钟前
1分钟前
lod完成签到,获得积分10
2分钟前
所所应助科研通管家采纳,获得30
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
2分钟前
啊啊啊完成签到,获得积分10
2分钟前
2分钟前
2分钟前
小马2023发布了新的文献求助10
2分钟前
chandlerwong发布了新的文献求助10
2分钟前
2分钟前
氯雷他定发布了新的文献求助10
2分钟前
chandlerwong完成签到,获得积分10
2分钟前
上官若男应助sxj采纳,获得10
2分钟前
llll完成签到 ,获得积分0
2分钟前
氯雷他定完成签到,获得积分10
2分钟前
2分钟前
NattyPoe发布了新的文献求助10
2分钟前
阿诺发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880512
求助须知:如何正确求助?哪些是违规求助? 6573473
关于积分的说明 15689941
捐赠科研通 5000219
什么是DOI,文献DOI怎么找? 2694223
邀请新用户注册赠送积分活动 1636089
关于科研通互助平台的介绍 1593468