Optimizing E-Commerce Pricing Strategies: A Comparative Analysis of Machine Learning Models for Predicting Customer Satisfaction

顾客满意度 电子商务 计算机科学 知识管理 营销 机器学习 人工智能 业务 万维网
作者
Md Salim Chowdhury,Md Shujan Shak,Suniti Devi,M. R. Miah,Abdullah Al Mamun,Estak Ahmed,Sk Abu Sheleh Hera,Fuad Mahmud,Md Shahin Alam Mozumder
出处
期刊:The American journal of engineering and technology [The USA Journals]
卷期号:06 (09): 6-17
标识
DOI:10.37547/tajet/volume06issue09-02
摘要

Optimizing pricing strategies in e-commerce through machine learning is crucial for enhancing customer satisfaction and achieving business success. This study evaluates the effectiveness of five machine learning models—Linear Regression, Decision Trees, Random Forest, Support Vector Machines (SVM), and Neural Networks—in refining e-commerce pricing strategies using a dataset of historical transaction records. Models were assessed based on Mean Absolute Error (MAE), Root Mean Square Error (RMSE), R-squared (R²), and F1-Score.Neural Networks demonstrated superior performance with the lowest MAE (0.126), RMSE (0.155), and the highest R² (0.84) and F1-Score (0.88), highlighting its capacity to model complex, non-linear relationships. However, its high computational demands may limit its feasibility for some businesses. In contrast, Random Forest, with an MAE of 0.130, RMSE of 0.160, R² of 0.82, and F1-Score of 0.86, offers a balanced alternative, combining strong performance with greater interpretability. The findings emphasize the importance of choosing a machine learning model that aligns with business needs, resource constraints, and the trade-off between accuracy and interpretability. Integrating these models can optimize pricing strategies, better meet customer expectations, and improve business outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脉动完成签到,获得积分10
1秒前
1秒前
fantastic完成签到,获得积分10
2秒前
Jero完成签到 ,获得积分10
2秒前
rrrr发布了新的文献求助10
2秒前
浮游应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
4秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
小小应助科研通管家采纳,获得10
4秒前
小小应助科研通管家采纳,获得20
4秒前
小小应助科研通管家采纳,获得10
4秒前
小小应助科研通管家采纳,获得10
4秒前
小小应助科研通管家采纳,获得30
4秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
靳韩羽发布了新的文献求助10
5秒前
今后应助竹笛采纳,获得10
5秒前
6秒前
7秒前
平常心完成签到,获得积分10
8秒前
NN发布了新的文献求助30
8秒前
王长莲发布了新的文献求助10
8秒前
pamela完成签到,获得积分20
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812