Optimizing E-Commerce Pricing Strategies: A Comparative Analysis of Machine Learning Models for Predicting Customer Satisfaction

顾客满意度 电子商务 计算机科学 知识管理 营销 机器学习 人工智能 业务 万维网
作者
Md Salim Chowdhury,Md Shujan Shak,Suniti Devi,M. R. Miah,Abdullah Al Mamun,Estak Ahmed,Sk Abu Sheleh Hera,Fuad Mahmud,Md Shahin Alam Mozumder
出处
期刊:The American journal of engineering and technology [The USA Journals]
卷期号:06 (09): 6-17
标识
DOI:10.37547/tajet/volume06issue09-02
摘要

Optimizing pricing strategies in e-commerce through machine learning is crucial for enhancing customer satisfaction and achieving business success. This study evaluates the effectiveness of five machine learning models—Linear Regression, Decision Trees, Random Forest, Support Vector Machines (SVM), and Neural Networks—in refining e-commerce pricing strategies using a dataset of historical transaction records. Models were assessed based on Mean Absolute Error (MAE), Root Mean Square Error (RMSE), R-squared (R²), and F1-Score.Neural Networks demonstrated superior performance with the lowest MAE (0.126), RMSE (0.155), and the highest R² (0.84) and F1-Score (0.88), highlighting its capacity to model complex, non-linear relationships. However, its high computational demands may limit its feasibility for some businesses. In contrast, Random Forest, with an MAE of 0.130, RMSE of 0.160, R² of 0.82, and F1-Score of 0.86, offers a balanced alternative, combining strong performance with greater interpretability. The findings emphasize the importance of choosing a machine learning model that aligns with business needs, resource constraints, and the trade-off between accuracy and interpretability. Integrating these models can optimize pricing strategies, better meet customer expectations, and improve business outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
专注的雪完成签到 ,获得积分10
2秒前
2秒前
2秒前
Smar_zcl应助科研通管家采纳,获得20
2秒前
Smar_zcl应助科研通管家采纳,获得20
2秒前
所所应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得30
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
大吧唧应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
3秒前
英姑应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
okay完成签到,获得积分10
5秒前
5秒前
ZDP完成签到,获得积分20
5秒前
严yee完成签到,获得积分10
7秒前
无极微光应助limi采纳,获得20
7秒前
量子星尘发布了新的文献求助10
8秒前
浮游应助hkh采纳,获得10
8秒前
希望天下0贩的0应助hkh采纳,获得10
8秒前
Owen应助hkh采纳,获得10
8秒前
犹豫的初丹完成签到,获得积分10
8秒前
李健应助糍粑采纳,获得10
8秒前
冷静初彤完成签到,获得积分10
9秒前
Owen应助轩儿轩采纳,获得10
9秒前
叫滚滚发布了新的文献求助10
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424333
求助须知:如何正确求助?哪些是违规求助? 4538732
关于积分的说明 14163572
捐赠科研通 4455641
什么是DOI,文献DOI怎么找? 2443832
邀请新用户注册赠送积分活动 1434995
关于科研通互助平台的介绍 1412304