Optimizing E-Commerce Pricing Strategies: A Comparative Analysis of Machine Learning Models for Predicting Customer Satisfaction

顾客满意度 电子商务 计算机科学 知识管理 营销 机器学习 人工智能 业务 万维网
作者
Md Salim Chowdhury,Md Shujan Shak,Suniti Devi,M. R. Miah,Abdullah Al Mamun,Estak Ahmed,Sk Abu Sheleh Hera,Fuad Mahmud,Md Shahin Alam Mozumder
出处
期刊:The American journal of engineering and technology [The USA Journals]
卷期号:06 (09): 6-17
标识
DOI:10.37547/tajet/volume06issue09-02
摘要

Optimizing pricing strategies in e-commerce through machine learning is crucial for enhancing customer satisfaction and achieving business success. This study evaluates the effectiveness of five machine learning models—Linear Regression, Decision Trees, Random Forest, Support Vector Machines (SVM), and Neural Networks—in refining e-commerce pricing strategies using a dataset of historical transaction records. Models were assessed based on Mean Absolute Error (MAE), Root Mean Square Error (RMSE), R-squared (R²), and F1-Score.Neural Networks demonstrated superior performance with the lowest MAE (0.126), RMSE (0.155), and the highest R² (0.84) and F1-Score (0.88), highlighting its capacity to model complex, non-linear relationships. However, its high computational demands may limit its feasibility for some businesses. In contrast, Random Forest, with an MAE of 0.130, RMSE of 0.160, R² of 0.82, and F1-Score of 0.86, offers a balanced alternative, combining strong performance with greater interpretability. The findings emphasize the importance of choosing a machine learning model that aligns with business needs, resource constraints, and the trade-off between accuracy and interpretability. Integrating these models can optimize pricing strategies, better meet customer expectations, and improve business outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hellowa完成签到,获得积分10
刚刚
刚刚
精明的芷荷完成签到,获得积分10
刚刚
刚刚
1秒前
慕青应助kingJames采纳,获得10
1秒前
yy完成签到 ,获得积分10
1秒前
俏皮的采蓝完成签到,获得积分10
2秒前
jackwang发布了新的文献求助10
4秒前
丰富青雪完成签到 ,获得积分10
4秒前
4秒前
东木应助诺奖就在前方采纳,获得20
5秒前
8秒前
Rondab应助科研通管家采纳,获得10
9秒前
fanyueyue应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
fanyueyue应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
Rondab应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
SYLH应助科研通管家采纳,获得20
9秒前
9秒前
10秒前
Rondab应助科研通管家采纳,获得10
10秒前
Rondab应助科研通管家采纳,获得10
10秒前
xiaocao完成签到,获得积分10
13秒前
huanglm发布了新的文献求助10
16秒前
16秒前
开朗的寄灵完成签到,获得积分10
16秒前
daisies应助QDU采纳,获得20
16秒前
18秒前
海棠花未眠完成签到,获得积分10
18秒前
涂欣桐完成签到,获得积分10
19秒前
肚子没肥发布了新的文献求助30
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997769
求助须知:如何正确求助?哪些是违规求助? 3537294
关于积分的说明 11271231
捐赠科研通 3276455
什么是DOI,文献DOI怎么找? 1807040
邀请新用户注册赠送积分活动 883639
科研通“疑难数据库(出版商)”最低求助积分说明 809982