Optimizing E-Commerce Pricing Strategies: A Comparative Analysis of Machine Learning Models for Predicting Customer Satisfaction

顾客满意度 电子商务 计算机科学 知识管理 营销 机器学习 人工智能 业务 万维网
作者
Md Salim Chowdhury,Md Shujan Shak,Suniti Devi,M. R. Miah,Abdullah Al Mamun,Estak Ahmed,Sk Abu Sheleh Hera,Fuad Mahmud,Md Shahin Alam Mozumder
出处
期刊:The American journal of engineering and technology [The USA Journals]
卷期号:06 (09): 6-17
标识
DOI:10.37547/tajet/volume06issue09-02
摘要

Optimizing pricing strategies in e-commerce through machine learning is crucial for enhancing customer satisfaction and achieving business success. This study evaluates the effectiveness of five machine learning models—Linear Regression, Decision Trees, Random Forest, Support Vector Machines (SVM), and Neural Networks—in refining e-commerce pricing strategies using a dataset of historical transaction records. Models were assessed based on Mean Absolute Error (MAE), Root Mean Square Error (RMSE), R-squared (R²), and F1-Score.Neural Networks demonstrated superior performance with the lowest MAE (0.126), RMSE (0.155), and the highest R² (0.84) and F1-Score (0.88), highlighting its capacity to model complex, non-linear relationships. However, its high computational demands may limit its feasibility for some businesses. In contrast, Random Forest, with an MAE of 0.130, RMSE of 0.160, R² of 0.82, and F1-Score of 0.86, offers a balanced alternative, combining strong performance with greater interpretability. The findings emphasize the importance of choosing a machine learning model that aligns with business needs, resource constraints, and the trade-off between accuracy and interpretability. Integrating these models can optimize pricing strategies, better meet customer expectations, and improve business outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bibi发布了新的文献求助10
1秒前
111完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
不想再哭发布了新的文献求助10
3秒前
CheeseD发布了新的文献求助10
3秒前
故渊完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
张爽发布了新的文献求助20
5秒前
故渊发布了新的文献求助10
7秒前
啊嘞嘞发布了新的文献求助10
8秒前
Amy发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
张献忠发布了新的文献求助10
11秒前
11秒前
325715完成签到,获得积分10
12秒前
学术妲己完成签到,获得积分10
12秒前
李亚楠完成签到,获得积分10
13秒前
ZZY关闭了ZZY文献求助
13秒前
AG杰完成签到 ,获得积分20
14秒前
量子星尘发布了新的文献求助10
16秒前
工艺员发布了新的文献求助10
16秒前
Amy完成签到,获得积分10
17秒前
gww发布了新的文献求助10
18秒前
张献忠完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
19秒前
20秒前
CipherSage应助zerovb3采纳,获得10
20秒前
解语花发布了新的文献求助50
23秒前
23秒前
23秒前
健壮问枫发布了新的文献求助30
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4590231
求助须知:如何正确求助?哪些是违规求助? 4005083
关于积分的说明 12400271
捐赠科研通 3682147
什么是DOI,文献DOI怎么找? 2029449
邀请新用户注册赠送积分活动 1063022
科研通“疑难数据库(出版商)”最低求助积分说明 948604