Optimizing E-Commerce Pricing Strategies: A Comparative Analysis of Machine Learning Models for Predicting Customer Satisfaction

顾客满意度 电子商务 计算机科学 知识管理 营销 机器学习 人工智能 业务 万维网
作者
Md Salim Chowdhury,Md Shujan Shak,Suniti Devi,M. R. Miah,Abdullah Al Mamun,Estak Ahmed,Sk Abu Sheleh Hera,Fuad Mahmud,Md Shahin Alam Mozumder
出处
期刊:The American journal of engineering and technology [The USA Journals]
卷期号:06 (09): 6-17
标识
DOI:10.37547/tajet/volume06issue09-02
摘要

Optimizing pricing strategies in e-commerce through machine learning is crucial for enhancing customer satisfaction and achieving business success. This study evaluates the effectiveness of five machine learning models—Linear Regression, Decision Trees, Random Forest, Support Vector Machines (SVM), and Neural Networks—in refining e-commerce pricing strategies using a dataset of historical transaction records. Models were assessed based on Mean Absolute Error (MAE), Root Mean Square Error (RMSE), R-squared (R²), and F1-Score.Neural Networks demonstrated superior performance with the lowest MAE (0.126), RMSE (0.155), and the highest R² (0.84) and F1-Score (0.88), highlighting its capacity to model complex, non-linear relationships. However, its high computational demands may limit its feasibility for some businesses. In contrast, Random Forest, with an MAE of 0.130, RMSE of 0.160, R² of 0.82, and F1-Score of 0.86, offers a balanced alternative, combining strong performance with greater interpretability. The findings emphasize the importance of choosing a machine learning model that aligns with business needs, resource constraints, and the trade-off between accuracy and interpretability. Integrating these models can optimize pricing strategies, better meet customer expectations, and improve business outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
3秒前
4秒前
zx598376321完成签到,获得积分10
6秒前
zhaoyue完成签到 ,获得积分10
9秒前
9秒前
萧瑟处完成签到,获得积分10
9秒前
星宿陨完成签到 ,获得积分10
10秒前
Duomo完成签到 ,获得积分10
10秒前
李健的小迷弟应助三木采纳,获得10
10秒前
扶光完成签到,获得积分10
14秒前
18秒前
希望天下0贩的0应助ch采纳,获得10
19秒前
20秒前
浮游应助科研通管家采纳,获得10
22秒前
寻道图强应助科研通管家采纳,获得100
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
wanci应助科研通管家采纳,获得10
22秒前
Orange应助科研通管家采纳,获得10
22秒前
22秒前
沉静凝荷发布了新的文献求助10
24秒前
yatou327发布了新的文献求助10
24秒前
26秒前
26秒前
高调的摆酒人完成签到,获得积分10
28秒前
29秒前
30秒前
30秒前
GQ发布了新的文献求助10
32秒前
禾几完成签到,获得积分10
32秒前
禾几发布了新的文献求助10
34秒前
LL发布了新的文献求助10
35秒前
充电宝应助GQ采纳,获得10
39秒前
CGW关闭了CGW文献求助
40秒前
安然无恙完成签到,获得积分10
42秒前
科研通AI2S应助echo采纳,获得30
44秒前
风铃发布了新的文献求助10
47秒前
刘小源完成签到 ,获得积分10
49秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5380142
求助须知:如何正确求助?哪些是违规求助? 4504163
关于积分的说明 14017516
捐赠科研通 4413104
什么是DOI,文献DOI怎么找? 2424070
邀请新用户注册赠送积分活动 1416950
关于科研通互助平台的介绍 1394678