Optimizing E-Commerce Pricing Strategies: A Comparative Analysis of Machine Learning Models for Predicting Customer Satisfaction

顾客满意度 电子商务 计算机科学 知识管理 营销 机器学习 人工智能 业务 万维网
作者
Md Salim Chowdhury,Md Shujan Shak,Suniti Devi,M. R. Miah,Abdullah Al Mamun,Estak Ahmed,Sk Abu Sheleh Hera,Fuad Mahmud,Md Shahin Alam Mozumder
出处
期刊:The American journal of engineering and technology [The USA Journals]
卷期号:06 (09): 6-17
标识
DOI:10.37547/tajet/volume06issue09-02
摘要

Optimizing pricing strategies in e-commerce through machine learning is crucial for enhancing customer satisfaction and achieving business success. This study evaluates the effectiveness of five machine learning models—Linear Regression, Decision Trees, Random Forest, Support Vector Machines (SVM), and Neural Networks—in refining e-commerce pricing strategies using a dataset of historical transaction records. Models were assessed based on Mean Absolute Error (MAE), Root Mean Square Error (RMSE), R-squared (R²), and F1-Score.Neural Networks demonstrated superior performance with the lowest MAE (0.126), RMSE (0.155), and the highest R² (0.84) and F1-Score (0.88), highlighting its capacity to model complex, non-linear relationships. However, its high computational demands may limit its feasibility for some businesses. In contrast, Random Forest, with an MAE of 0.130, RMSE of 0.160, R² of 0.82, and F1-Score of 0.86, offers a balanced alternative, combining strong performance with greater interpretability. The findings emphasize the importance of choosing a machine learning model that aligns with business needs, resource constraints, and the trade-off between accuracy and interpretability. Integrating these models can optimize pricing strategies, better meet customer expectations, and improve business outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
4秒前
Dr_Fang完成签到,获得积分10
4秒前
希望天下0贩的0应助wwww采纳,获得10
5秒前
慕青应助信徒采纳,获得10
6秒前
CodeCraft应助小熊5号采纳,获得10
6秒前
wpie99发布了新的文献求助10
7秒前
7秒前
脑洞疼应助ddd采纳,获得10
8秒前
六一发布了新的文献求助10
8秒前
RUI完成签到 ,获得积分10
9秒前
情怀应助哦哦哦噢噢噢噢采纳,获得10
11秒前
11秒前
12秒前
帅气善斓发布了新的文献求助10
12秒前
yuanyueyue完成签到,获得积分10
12秒前
13秒前
chall应助一二三四11采纳,获得10
15秒前
15秒前
illi发布了新的文献求助10
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
17秒前
wanci应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
852应助科研通管家采纳,获得10
17秒前
Alex应助科研通管家采纳,获得30
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
小马甲应助Xinzz采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
猪猪hero应助科研通管家采纳,获得10
17秒前
17秒前
猪猪hero应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
猪猪hero应助科研通管家采纳,获得10
18秒前
Alex应助科研通管家采纳,获得30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626820
求助须知:如何正确求助?哪些是违规求助? 4712727
关于积分的说明 14960335
捐赠科研通 4782760
什么是DOI,文献DOI怎么找? 2554542
邀请新用户注册赠送积分活动 1516181
关于科研通互助平台的介绍 1476457