Optimizing E-Commerce Pricing Strategies: A Comparative Analysis of Machine Learning Models for Predicting Customer Satisfaction

顾客满意度 电子商务 计算机科学 知识管理 营销 机器学习 人工智能 业务 万维网
作者
Md Salim Chowdhury,Md Shujan Shak,Suniti Devi,M. R. Miah,Abdullah Al Mamun,Estak Ahmed,Sk Abu Sheleh Hera,Fuad Mahmud,Md Shahin Alam Mozumder
出处
期刊:The American journal of engineering and technology [The USA Journals]
卷期号:06 (09): 6-17
标识
DOI:10.37547/tajet/volume06issue09-02
摘要

Optimizing pricing strategies in e-commerce through machine learning is crucial for enhancing customer satisfaction and achieving business success. This study evaluates the effectiveness of five machine learning models—Linear Regression, Decision Trees, Random Forest, Support Vector Machines (SVM), and Neural Networks—in refining e-commerce pricing strategies using a dataset of historical transaction records. Models were assessed based on Mean Absolute Error (MAE), Root Mean Square Error (RMSE), R-squared (R²), and F1-Score.Neural Networks demonstrated superior performance with the lowest MAE (0.126), RMSE (0.155), and the highest R² (0.84) and F1-Score (0.88), highlighting its capacity to model complex, non-linear relationships. However, its high computational demands may limit its feasibility for some businesses. In contrast, Random Forest, with an MAE of 0.130, RMSE of 0.160, R² of 0.82, and F1-Score of 0.86, offers a balanced alternative, combining strong performance with greater interpretability. The findings emphasize the importance of choosing a machine learning model that aligns with business needs, resource constraints, and the trade-off between accuracy and interpretability. Integrating these models can optimize pricing strategies, better meet customer expectations, and improve business outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wlh123完成签到,获得积分10
1秒前
2秒前
小小迷糊完成签到,获得积分10
2秒前
2秒前
111给111的求助进行了留言
2秒前
2秒前
3秒前
3秒前
4秒前
董董发布了新的文献求助10
5秒前
Nic完成签到,获得积分10
5秒前
5秒前
5秒前
舒服的盼秋完成签到,获得积分10
6秒前
6秒前
6秒前
桐桐应助umil采纳,获得10
6秒前
ni完成签到,获得积分10
7秒前
SILENCE完成签到,获得积分10
7秒前
辣辣完成签到,获得积分20
7秒前
8秒前
皮皮帅发布了新的文献求助10
9秒前
lc发布了新的文献求助10
9秒前
Outsider发布了新的文献求助10
9秒前
wangangmumu发布了新的文献求助10
10秒前
JJ发布了新的文献求助10
11秒前
ytangus发布了新的文献求助10
11秒前
所所应助ss采纳,获得10
12秒前
12秒前
哈哈发布了新的文献求助30
12秒前
ding应助Huang2547采纳,获得10
13秒前
ding应助愉快草莓采纳,获得10
14秒前
14秒前
充电宝应助皮皮帅采纳,获得10
14秒前
15秒前
Flames发布了新的文献求助30
15秒前
HNNUYanY发布了新的文献求助10
15秒前
Akim应助junjie1022222采纳,获得10
16秒前
18秒前
pluto应助坦率的大神采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076804
求助须知:如何正确求助?哪些是违规求助? 2729802
关于积分的说明 7510010
捐赠科研通 2378023
什么是DOI,文献DOI怎么找? 1260989
科研通“疑难数据库(出版商)”最低求助积分说明 611204
版权声明 597203