Are ICD codes reliable for observational studies? Assessing coding consistency for data quality

观察研究 计算机科学 编码(社会科学) 数据质量 一致性(知识库) 可靠性工程 医学 统计 数学 工程类 人工智能 内科学 运营管理 公制(单位)
作者
Stuart J. Nelson,Ying Yin,Eduardo A. Trujillo Rivera,Yijun Shao,Phillip Ma,Mark S. Tuttle,Jennifer H. Garvin,Qing Zeng‐Treitler
出处
期刊:Digital health [SAGE]
卷期号:10
标识
DOI:10.1177/20552076241297056
摘要

Objective International Classification of Diseases (ICD) codes recorded in electronic health records (EHRs) are frequently used to create patient cohorts or define phenotypes. Inconsistent assignment of codes may reduce the utility of such cohorts. We assessed the reliability across time and location of the assignment of ICD codes in a US health system at the time of the transition from ICD-9-CM (ICD, 9th Revision, Clinical Modification) to ICD-10-CM (ICD, 10th Revision, Clinical Modification). Materials and methods Using clusters of equivalent codes derived from the US Centers for Disease Control and Prevention General Equivalence Mapping (GEM) tables, ICD assignments occurring during the ICD-9-CM to ICD-10-CM transition were investigated in EHR data from the US Veterans Administration Central Data Warehouse using deep learning and statistical models. These models were then used to detect abrupt changes across the transition; additionally, changes at each VA station were examined. Results Many of the 687 most-used code clusters had ICD-10-CM assignments differing greatly from that predicted from the codes used in ICD-9-CM. Manual reviews of a random sample found that 66% of the clusters showed problematic changes, with 37% having no apparent explanations. Notably, the observed pattern of changes varied widely across care locations. Discussion and conclusion The observed coding variability across time and across location suggests that ICD codes in EHRs are insufficient to establish a semantically reliable cohort or phenotype. While some variations might be expected with a changing in coding structure, the inconsistency across locations suggests other difficulties. Researchers should consider carefully how cohorts and phenotypes of interest are selected and defined.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵念婉完成签到,获得积分10
刚刚
空城完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
guozizi发布了新的文献求助150
1秒前
Meyako完成签到 ,获得积分0
2秒前
前行的灿发布了新的文献求助20
2秒前
递年完成签到,获得积分10
3秒前
3秒前
欣慰的笑阳完成签到 ,获得积分10
4秒前
暮烟完成签到,获得积分10
4秒前
迷了路的猫完成签到,获得积分10
4秒前
白色的风车完成签到,获得积分10
5秒前
5秒前
万里完成签到,获得积分10
5秒前
5秒前
fang完成签到,获得积分10
6秒前
6秒前
hhh完成签到,获得积分10
7秒前
,。完成签到,获得积分10
7秒前
达雨发布了新的文献求助10
7秒前
领导范儿应助格林采纳,获得10
7秒前
Titi完成签到 ,获得积分10
7秒前
前行的灿发布了新的文献求助10
7秒前
Oil完成签到,获得积分10
7秒前
Leo完成签到,获得积分0
9秒前
平常星星完成签到 ,获得积分10
9秒前
现代宝宝完成签到,获得积分10
10秒前
苗条的紫文完成签到,获得积分10
10秒前
境随心转完成签到,获得积分10
10秒前
结实的洋葱完成签到,获得积分10
11秒前
斯文败类应助gzmejiji采纳,获得10
11秒前
共享精神应助猪头小队长采纳,获得10
12秒前
香蕉觅云应助drughunter009采纳,获得10
12秒前
刘晓丹完成签到,获得积分10
12秒前
Shark完成签到,获得积分10
12秒前
飞想思完成签到,获得积分10
12秒前
夏定海完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568403
求助须知:如何正确求助?哪些是违规求助? 4652961
关于积分的说明 14702698
捐赠科研通 4594773
什么是DOI,文献DOI怎么找? 2521254
邀请新用户注册赠送积分活动 1492932
关于科研通互助平台的介绍 1463735