Are ICD codes reliable for observational studies? Assessing coding consistency for data quality

观察研究 计算机科学 编码(社会科学) 数据质量 一致性(知识库) 可靠性工程 医学 统计 数学 工程类 人工智能 内科学 运营管理 公制(单位)
作者
Stuart J. Nelson,Ying Yin,Eduardo A. Trujillo Rivera,Yijun Shao,Phillip Ma,Mark S. Tuttle,Jennifer H. Garvin,Qing Zeng‐Treitler
出处
期刊:Digital health [SAGE]
卷期号:10
标识
DOI:10.1177/20552076241297056
摘要

Objective International Classification of Diseases (ICD) codes recorded in electronic health records (EHRs) are frequently used to create patient cohorts or define phenotypes. Inconsistent assignment of codes may reduce the utility of such cohorts. We assessed the reliability across time and location of the assignment of ICD codes in a US health system at the time of the transition from ICD-9-CM (ICD, 9th Revision, Clinical Modification) to ICD-10-CM (ICD, 10th Revision, Clinical Modification). Materials and methods Using clusters of equivalent codes derived from the US Centers for Disease Control and Prevention General Equivalence Mapping (GEM) tables, ICD assignments occurring during the ICD-9-CM to ICD-10-CM transition were investigated in EHR data from the US Veterans Administration Central Data Warehouse using deep learning and statistical models. These models were then used to detect abrupt changes across the transition; additionally, changes at each VA station were examined. Results Many of the 687 most-used code clusters had ICD-10-CM assignments differing greatly from that predicted from the codes used in ICD-9-CM. Manual reviews of a random sample found that 66% of the clusters showed problematic changes, with 37% having no apparent explanations. Notably, the observed pattern of changes varied widely across care locations. Discussion and conclusion The observed coding variability across time and across location suggests that ICD codes in EHRs are insufficient to establish a semantically reliable cohort or phenotype. While some variations might be expected with a changing in coding structure, the inconsistency across locations suggests other difficulties. Researchers should consider carefully how cohorts and phenotypes of interest are selected and defined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
美好乌龟完成签到 ,获得积分10
刚刚
刚刚
烟雨行舟完成签到,获得积分10
1秒前
1秒前
1秒前
搜集达人应助刘星星采纳,获得30
2秒前
赘婿应助顺利水杯采纳,获得10
2秒前
2秒前
明亮的溪灵完成签到,获得积分10
2秒前
3秒前
3秒前
充电宝应助01259采纳,获得10
3秒前
天真的莺完成签到,获得积分10
4秒前
想要赚大钱完成签到,获得积分10
4秒前
大模型应助徐慕源采纳,获得10
4秒前
格格星发布了新的文献求助10
6秒前
sunnyyty发布了新的文献求助10
7秒前
tanjianxin发布了新的文献求助10
7秒前
JIE发布了新的文献求助10
7秒前
安娜完成签到,获得积分10
7秒前
怕黑砖头发布了新的文献求助10
8秒前
科目三应助饭小心采纳,获得10
8秒前
8秒前
科研通AI2S应助花陵采纳,获得10
8秒前
善学以致用应助大吴克采纳,获得10
10秒前
老实雁蓉完成签到,获得积分10
10秒前
良辰应助zjh采纳,获得10
10秒前
yulong完成签到 ,获得积分10
11秒前
热心的早晨完成签到,获得积分10
11秒前
如此纠结完成签到,获得积分10
11秒前
多多就是小豆芽完成签到 ,获得积分10
12秒前
12秒前
Owen应助Lwxbb采纳,获得10
12秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
12秒前
小小杜完成签到,获得积分10
12秒前
初心完成签到,获得积分20
12秒前
丽丽完成签到 ,获得积分10
12秒前
学术蟑螂发布了新的文献求助10
12秒前
文艺的竺完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740