Are ICD codes reliable for observational studies? Assessing coding consistency for data quality

观察研究 计算机科学 编码(社会科学) 数据质量 一致性(知识库) 可靠性工程 医学 统计 数学 工程类 人工智能 内科学 运营管理 公制(单位)
作者
Stuart J. Nelson,Ying Yin,Eduardo A. Trujillo Rivera,Yijun Shao,Phillip Ma,Mark S. Tuttle,Jennifer H. Garvin,Qing Zeng‐Treitler
出处
期刊:Digital health [SAGE Publishing]
卷期号:10
标识
DOI:10.1177/20552076241297056
摘要

Objective International Classification of Diseases (ICD) codes recorded in electronic health records (EHRs) are frequently used to create patient cohorts or define phenotypes. Inconsistent assignment of codes may reduce the utility of such cohorts. We assessed the reliability across time and location of the assignment of ICD codes in a US health system at the time of the transition from ICD-9-CM (ICD, 9th Revision, Clinical Modification) to ICD-10-CM (ICD, 10th Revision, Clinical Modification). Materials and methods Using clusters of equivalent codes derived from the US Centers for Disease Control and Prevention General Equivalence Mapping (GEM) tables, ICD assignments occurring during the ICD-9-CM to ICD-10-CM transition were investigated in EHR data from the US Veterans Administration Central Data Warehouse using deep learning and statistical models. These models were then used to detect abrupt changes across the transition; additionally, changes at each VA station were examined. Results Many of the 687 most-used code clusters had ICD-10-CM assignments differing greatly from that predicted from the codes used in ICD-9-CM. Manual reviews of a random sample found that 66% of the clusters showed problematic changes, with 37% having no apparent explanations. Notably, the observed pattern of changes varied widely across care locations. Discussion and conclusion The observed coding variability across time and across location suggests that ICD codes in EHRs are insufficient to establish a semantically reliable cohort or phenotype. While some variations might be expected with a changing in coding structure, the inconsistency across locations suggests other difficulties. Researchers should consider carefully how cohorts and phenotypes of interest are selected and defined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
Ava应助baining采纳,获得10
3秒前
zz发布了新的文献求助100
4秒前
Kirin完成签到,获得积分10
4秒前
爱笑可仁发布了新的文献求助10
5秒前
科研菜鸟发布了新的文献求助10
7秒前
duyi0521完成签到,获得积分10
7秒前
刘梦迪完成签到,获得积分10
7秒前
Lemon发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
7qi完成签到,获得积分10
9秒前
赘婿应助tanrui采纳,获得10
9秒前
12秒前
跳跃的蝴蝶完成签到,获得积分10
12秒前
且是天下应助袁123采纳,获得10
13秒前
sxy发布了新的文献求助20
13秒前
NexusExplorer应助7qi采纳,获得10
13秒前
15秒前
changping应助机智灵薇采纳,获得10
15秒前
蓝华完成签到 ,获得积分10
17秒前
科研通AI6应助燕武采纳,获得10
18秒前
852应助Jun采纳,获得10
18秒前
18秒前
19秒前
19秒前
丘比特应助rationality采纳,获得10
19秒前
伊雪儿发布了新的文献求助10
20秒前
22秒前
浮游应助刘梦迪采纳,获得10
22秒前
浮游应助xinxi采纳,获得10
23秒前
千寻发布了新的文献求助10
24秒前
英俊的铭应助吴旭东采纳,获得10
24秒前
zzt发布了新的文献求助10
24秒前
123完成签到 ,获得积分10
24秒前
25秒前
西北完成签到,获得积分10
28秒前
科研通AI5应助淡然勒采纳,获得30
29秒前
华仔应助小野狼采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Nonthermal Processing Technologies for Food 800
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4987663
求助须知:如何正确求助?哪些是违规求助? 4237427
关于积分的说明 13198870
捐赠科研通 4031079
什么是DOI,文献DOI怎么找? 2205302
邀请新用户注册赠送积分活动 1216904
关于科研通互助平台的介绍 1134916