Are ICD codes reliable for observational studies? Assessing coding consistency for data quality

观察研究 计算机科学 编码(社会科学) 数据质量 一致性(知识库) 可靠性工程 医学 统计 数学 工程类 人工智能 内科学 运营管理 公制(单位)
作者
Stuart J. Nelson,Ying Yin,Eduardo A. Trujillo Rivera,Yijun Shao,Phillip Ma,Mark S. Tuttle,Jennifer H. Garvin,Qing Zeng‐Treitler
出处
期刊:Digital health [SAGE]
卷期号:10
标识
DOI:10.1177/20552076241297056
摘要

Objective International Classification of Diseases (ICD) codes recorded in electronic health records (EHRs) are frequently used to create patient cohorts or define phenotypes. Inconsistent assignment of codes may reduce the utility of such cohorts. We assessed the reliability across time and location of the assignment of ICD codes in a US health system at the time of the transition from ICD-9-CM (ICD, 9th Revision, Clinical Modification) to ICD-10-CM (ICD, 10th Revision, Clinical Modification). Materials and methods Using clusters of equivalent codes derived from the US Centers for Disease Control and Prevention General Equivalence Mapping (GEM) tables, ICD assignments occurring during the ICD-9-CM to ICD-10-CM transition were investigated in EHR data from the US Veterans Administration Central Data Warehouse using deep learning and statistical models. These models were then used to detect abrupt changes across the transition; additionally, changes at each VA station were examined. Results Many of the 687 most-used code clusters had ICD-10-CM assignments differing greatly from that predicted from the codes used in ICD-9-CM. Manual reviews of a random sample found that 66% of the clusters showed problematic changes, with 37% having no apparent explanations. Notably, the observed pattern of changes varied widely across care locations. Discussion and conclusion The observed coding variability across time and across location suggests that ICD codes in EHRs are insufficient to establish a semantically reliable cohort or phenotype. While some variations might be expected with a changing in coding structure, the inconsistency across locations suggests other difficulties. Researchers should consider carefully how cohorts and phenotypes of interest are selected and defined.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小陈呀完成签到 ,获得积分10
1秒前
1秒前
小tiger完成签到,获得积分10
2秒前
GAOSAN完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
MINE发布了新的文献求助10
2秒前
javalin发布了新的文献求助10
2秒前
小二郎应助MA采纳,获得10
2秒前
外向代柔完成签到 ,获得积分10
2秒前
Hello应助Genius采纳,获得10
3秒前
临妤发布了新的文献求助10
3秒前
3秒前
酷酷的阳不拉吉完成签到,获得积分10
4秒前
情怀应助可爱绮采纳,获得10
4秒前
我是你爹发布了新的文献求助10
4秒前
小二郎应助甜甜圈采纳,获得10
4秒前
5秒前
SciGPT应助ao黛雷赫采纳,获得10
5秒前
科研通AI6应助干净冰颜采纳,获得10
5秒前
6秒前
agrinxin发布了新的文献求助10
6秒前
bkagyin应助wzz采纳,获得10
6秒前
6秒前
6秒前
jing发布了新的文献求助10
7秒前
zhouxue完成签到,获得积分10
7秒前
三点水完成签到,获得积分10
8秒前
小二郎应助不爱吃柠檬采纳,获得30
8秒前
RilerT完成签到,获得积分10
8秒前
8秒前
Alanni完成签到 ,获得积分10
8秒前
8秒前
呆萌听兰完成签到,获得积分20
8秒前
超级山兰发布了新的文献求助10
8秒前
一定能毕业关注了科研通微信公众号
9秒前
嘿嘿嘿发布了新的文献求助10
9秒前
临妤完成签到,获得积分10
9秒前
Dali应助咸云采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576645
求助须知:如何正确求助?哪些是违规求助? 4662026
关于积分的说明 14739107
捐赠科研通 4602583
什么是DOI,文献DOI怎么找? 2525877
邀请新用户注册赠送积分活动 1495813
关于科研通互助平台的介绍 1465448