Are ICD codes reliable for observational studies? Assessing coding consistency for data quality

观察研究 计算机科学 编码(社会科学) 数据质量 一致性(知识库) 可靠性工程 医学 统计 数学 工程类 人工智能 内科学 运营管理 公制(单位)
作者
Stuart J. Nelson,Ying Yin,Eduardo A. Trujillo Rivera,Yijun Shao,Phillip Ma,Mark S. Tuttle,Jennifer H. Garvin,Qing Zeng‐Treitler
出处
期刊:Digital health [SAGE]
卷期号:10
标识
DOI:10.1177/20552076241297056
摘要

Objective International Classification of Diseases (ICD) codes recorded in electronic health records (EHRs) are frequently used to create patient cohorts or define phenotypes. Inconsistent assignment of codes may reduce the utility of such cohorts. We assessed the reliability across time and location of the assignment of ICD codes in a US health system at the time of the transition from ICD-9-CM (ICD, 9th Revision, Clinical Modification) to ICD-10-CM (ICD, 10th Revision, Clinical Modification). Materials and methods Using clusters of equivalent codes derived from the US Centers for Disease Control and Prevention General Equivalence Mapping (GEM) tables, ICD assignments occurring during the ICD-9-CM to ICD-10-CM transition were investigated in EHR data from the US Veterans Administration Central Data Warehouse using deep learning and statistical models. These models were then used to detect abrupt changes across the transition; additionally, changes at each VA station were examined. Results Many of the 687 most-used code clusters had ICD-10-CM assignments differing greatly from that predicted from the codes used in ICD-9-CM. Manual reviews of a random sample found that 66% of the clusters showed problematic changes, with 37% having no apparent explanations. Notably, the observed pattern of changes varied widely across care locations. Discussion and conclusion The observed coding variability across time and across location suggests that ICD codes in EHRs are insufficient to establish a semantically reliable cohort or phenotype. While some variations might be expected with a changing in coding structure, the inconsistency across locations suggests other difficulties. Researchers should consider carefully how cohorts and phenotypes of interest are selected and defined.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助调皮的滑板采纳,获得10
1秒前
bubu发布了新的文献求助10
1秒前
xixi发布了新的文献求助10
1秒前
2秒前
2秒前
xiaofeizhu发布了新的文献求助10
2秒前
深情安青应助刘丰铭采纳,获得10
2秒前
无极微光应助雷Lei采纳,获得20
3秒前
3秒前
3秒前
Eon发布了新的文献求助10
3秒前
5秒前
十把刀刀完成签到,获得积分10
5秒前
6秒前
隐形曼青应助美好的冷亦采纳,获得10
6秒前
xiasha完成签到 ,获得积分10
6秒前
7秒前
7秒前
幽默的尔蓝完成签到,获得积分10
7秒前
科研通AI6应助f1mike110采纳,获得10
7秒前
Liao完成签到,获得积分10
8秒前
小懒猪完成签到,获得积分10
9秒前
木木木发布了新的文献求助10
9秒前
xixi完成签到,获得积分20
9秒前
我爱学习发布了新的文献求助10
10秒前
00完成签到,获得积分10
10秒前
糖果完成签到 ,获得积分10
10秒前
CipherSage应助柒玉染采纳,获得10
11秒前
科研民工李完成签到,获得积分10
11秒前
12秒前
123发布了新的文献求助20
12秒前
英俊的铭应助xiaofeizhu采纳,获得10
13秒前
13秒前
13秒前
Na完成签到,获得积分10
14秒前
15秒前
shaojiaikeyan完成签到,获得积分10
15秒前
Mao发布了新的文献求助10
17秒前
阿峰发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809