Predicting consumer ad preferences: Leveraging a machine learning approach for EDA and FEA neurophysiological metrics

厌恶 惊喜 计算机科学 支持向量机 机器学习 偏爱 人工智能 召回 随机森林 偏好学习 情绪分析 数据科学 人机交互 心理学 认知心理学 社会心理学 数学 统计 愤怒
作者
João Alexandre Lôbo Marques,Andreia C. Neto,Susana Costa e Silva,José Enrique Bigné Alcañiz
出处
期刊:Psychology & Marketing [Wiley]
标识
DOI:10.1002/mar.22118
摘要

Abstract This research unveils to predict consumer ad preferences by detecting seven basic emotions, attention and engagement triggered by advertising through the analysis of two specific physiological monitoring tools, electrodermal activity (EDA), and Facial Expression Analysis (FEA), applied to video advertising, offering a twofold contribution of significant value. First, to identify the most relevant physiological features for consumer preference prediction. We integrated a statistical module encompassing inferential and exploratory analysis tools, which identified emotions such as Joy, Disgust, and Surprise, enabling the statistical differentiation of preferences concerning various advertisements. Second, we present an artificial intelligence (AI) system founded on machine learning techniques, encompassing k‐Nearest Neighbors, Support Vector Machine, and Random Forest (RF). Our findings show that the RF technique emerged as the top performer, boasting an 81% Accuracy, 84% Precision, 79% Recall, and an F1‐score of 81% in predicting consumer preferences. In addition, our research proposes an eXplainable AI module based on feature importance, which discerned Attention, Engagement, Joy, and Disgust as the four most pivotal features influencing consumer ad preference prediction. The results indicate that computerized intelligent systems based on EDA and FEA data can be used to predict consumer ad preferences based on videos and effectively used as supporting tools for marketing specialists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后寒凡发布了新的文献求助30
1秒前
朕爱圣女果完成签到,获得积分10
1秒前
咩咩完成签到,获得积分10
1秒前
second发布了新的文献求助100
1秒前
落晨完成签到 ,获得积分10
2秒前
2秒前
2秒前
Ula完成签到,获得积分10
3秒前
阿杜阿杜完成签到,获得积分10
3秒前
笑点低煎饼完成签到,获得积分10
4秒前
4秒前
77完成签到,获得积分10
6秒前
zhouzhou发布了新的文献求助10
7秒前
666完成签到,获得积分10
7秒前
郭琳完成签到,获得积分10
8秒前
bkagyin应助落星采纳,获得10
8秒前
灵巧大地发布了新的文献求助100
9秒前
9秒前
10秒前
lkjks完成签到,获得积分20
10秒前
x111完成签到,获得积分20
11秒前
一二三四五完成签到,获得积分10
11秒前
真真完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
勤奋谷秋完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
慕青应助等一个晴天采纳,获得10
13秒前
lkjks发布了新的文献求助10
14秒前
15秒前
15秒前
kw发布了新的文献求助10
16秒前
常乐长安应助x111采纳,获得10
16秒前
廖佰城发布了新的文献求助10
16秒前
17秒前
yang发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543107
求助须知:如何正确求助?哪些是违规求助? 3120526
关于积分的说明 9342707
捐赠科研通 2818521
什么是DOI,文献DOI怎么找? 1549648
邀请新用户注册赠送积分活动 722213
科研通“疑难数据库(出版商)”最低求助积分说明 713049