重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Link prediction for knowledge graphs based on extended relational graph attention networks

计算机科学 知识图 图形 统计关系学习 理论计算机科学 人工智能 关系数据库 数据挖掘
作者
Zhanyue Cao,Chao Luo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:259: 125260-125260 被引量:7
标识
DOI:10.1016/j.eswa.2024.125260
摘要

• An novel link prediction framework based on entity-relation-level GAT. • Locally topological structures with relational features are hierarchically embedded. • The attention mechanism is used for the potential semantic information. Limited by the sufficiency and timeliness of information obtained, the connections among entities of knowledge graphs need to be updated continuously. Therefore, how to infer the possibility of linking between two unlinked entities with known information has important significance in real applications. Most existing works implemented the triple-level graph learning, which focused on the learning of graph features among triples but ignore triple-inside information. In this article, an entity-relation-level graph attention network model is proposed to fully learn the information of entities and relationships in the graph. Firstly, for each entity, the information of entities in their surrounding neighborhoods is learnt, and then the obtained information with relations of entities is integrated into the graph attention network for embeddings. Secondly, a novel entity and relation embedding method is implemented to map each element of the triple into the vector space for achieving deep interactions between entities and relations. Thirdly, ConvKB is used as decoder to complete the task of link prediction. Extensive experiments on real datasets show the promising results of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
天亮polar完成签到,获得积分10
刚刚
260929667完成签到,获得积分10
1秒前
2秒前
zhanwenlin完成签到 ,获得积分10
2秒前
gy完成签到 ,获得积分10
2秒前
xuleiman发布了新的文献求助10
2秒前
彭p完成签到,获得积分10
3秒前
吃点水果保护局完成签到 ,获得积分10
3秒前
dahua完成签到,获得积分20
3秒前
3秒前
3秒前
4秒前
Lucas应助shan采纳,获得10
4秒前
科研通AI2S应助wang采纳,获得10
4秒前
5秒前
5秒前
浮游应助西西采纳,获得10
6秒前
顾矜应助阿萨卡先生采纳,获得10
6秒前
认真乐双发布了新的文献求助10
7秒前
7秒前
7秒前
老实怀蝶完成签到,获得积分10
7秒前
oon完成签到,获得积分10
8秒前
111完成签到,获得积分10
8秒前
沙拉依丁发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
FuDD完成签到,获得积分10
9秒前
10秒前
11秒前
浮游应助徐老师采纳,获得30
11秒前
yukang完成签到,获得积分10
11秒前
yznfly给留不逗的求助进行了留言
11秒前
11秒前
落落发布了新的文献求助20
12秒前
疲倦之躯完成签到,获得积分10
12秒前
好运6连发布了新的文献求助10
12秒前
fveie完成签到 ,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465782
求助须知:如何正确求助?哪些是违规求助? 4570071
关于积分的说明 14322268
捐赠科研通 4496512
什么是DOI,文献DOI怎么找? 2463355
邀请新用户注册赠送积分活动 1452285
关于科研通互助平台的介绍 1427497