Link prediction for knowledge graphs based on extended relational graph attention networks

计算机科学 知识图 图形 统计关系学习 理论计算机科学 人工智能 关系数据库 数据挖掘
作者
Zhanyue Cao,Chao Luo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:259: 125260-125260
标识
DOI:10.1016/j.eswa.2024.125260
摘要

• An novel link prediction framework based on entity-relation-level GAT. • Locally topological structures with relational features are hierarchically embedded. • The attention mechanism is used for the potential semantic information. Limited by the sufficiency and timeliness of information obtained, the connections among entities of knowledge graphs need to be updated continuously. Therefore, how to infer the possibility of linking between two unlinked entities with known information has important significance in real applications. Most existing works implemented the triple-level graph learning, which focused on the learning of graph features among triples but ignore triple-inside information. In this article, an entity-relation-level graph attention network model is proposed to fully learn the information of entities and relationships in the graph. Firstly, for each entity, the information of entities in their surrounding neighborhoods is learnt, and then the obtained information with relations of entities is integrated into the graph attention network for embeddings. Secondly, a novel entity and relation embedding method is implemented to map each element of the triple into the vector space for achieving deep interactions between entities and relations. Thirdly, ConvKB is used as decoder to complete the task of link prediction. Extensive experiments on real datasets show the promising results of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LK完成签到,获得积分10
2秒前
2秒前
柠檬水发布了新的文献求助10
4秒前
4秒前
4秒前
6秒前
wjh发布了新的文献求助10
7秒前
文静三颜发布了新的文献求助10
8秒前
虚心傲丝完成签到,获得积分10
8秒前
10秒前
CC发布了新的文献求助10
10秒前
10秒前
小蘑菇应助夏漆采纳,获得10
12秒前
12秒前
12秒前
12秒前
JHJ123发布了新的文献求助10
13秒前
14秒前
觅香完成签到,获得积分10
15秒前
15秒前
marongzhi完成签到 ,获得积分10
15秒前
15秒前
julia应助大仁哥采纳,获得20
16秒前
16秒前
咖可乐完成签到,获得积分10
16秒前
17秒前
勤奋的晓晓完成签到,获得积分0
17秒前
某某某完成签到,获得积分10
18秒前
VDC应助淡定迎曼采纳,获得30
18秒前
今我来思发布了新的文献求助10
19秒前
小龙发布了新的文献求助10
19秒前
19秒前
和谐乐珍发布了新的文献求助30
20秒前
今后应助李金玉采纳,获得10
21秒前
隐形曼青应助bwh采纳,获得10
21秒前
香蕉觅云应助张欢欢采纳,获得10
21秒前
共享精神应助李知泽采纳,获得10
22秒前
23秒前
我相信完成签到,获得积分10
23秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459643
求助须知:如何正确求助?哪些是违规求助? 3053952
关于积分的说明 9039561
捐赠科研通 2743320
什么是DOI,文献DOI怎么找? 1504760
科研通“疑难数据库(出版商)”最低求助积分说明 695410
邀请新用户注册赠送积分活动 694699