Link prediction for knowledge graphs based on extended relational graph attention networks

计算机科学 知识图 图形 统计关系学习 理论计算机科学 人工智能 关系数据库 数据挖掘
作者
Zhanyue Cao,Chao Luo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:259: 125260-125260 被引量:7
标识
DOI:10.1016/j.eswa.2024.125260
摘要

• An novel link prediction framework based on entity-relation-level GAT. • Locally topological structures with relational features are hierarchically embedded. • The attention mechanism is used for the potential semantic information. Limited by the sufficiency and timeliness of information obtained, the connections among entities of knowledge graphs need to be updated continuously. Therefore, how to infer the possibility of linking between two unlinked entities with known information has important significance in real applications. Most existing works implemented the triple-level graph learning, which focused on the learning of graph features among triples but ignore triple-inside information. In this article, an entity-relation-level graph attention network model is proposed to fully learn the information of entities and relationships in the graph. Firstly, for each entity, the information of entities in their surrounding neighborhoods is learnt, and then the obtained information with relations of entities is integrated into the graph attention network for embeddings. Secondly, a novel entity and relation embedding method is implemented to map each element of the triple into the vector space for achieving deep interactions between entities and relations. Thirdly, ConvKB is used as decoder to complete the task of link prediction. Extensive experiments on real datasets show the promising results of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿应助xxi采纳,获得10
2秒前
zz完成签到 ,获得积分10
3秒前
冯佳琦完成签到,获得积分20
4秒前
4秒前
5秒前
5秒前
6秒前
Miranda完成签到,获得积分10
7秒前
堇笙vv发布了新的文献求助20
8秒前
xiaoru发布了新的文献求助10
9秒前
9秒前
单纯幻莲发布了新的文献求助10
10秒前
南星发布了新的文献求助10
10秒前
11秒前
kris发布了新的文献求助10
11秒前
勤劳的康乃馨完成签到,获得积分20
12秒前
12秒前
唐南发布了新的文献求助30
12秒前
13秒前
酷酷海豚完成签到,获得积分10
14秒前
15秒前
qq发布了新的文献求助10
15秒前
shihun发布了新的文献求助10
17秒前
17秒前
机智涵阳完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
袁向薇发布了新的文献求助10
19秒前
浮游应助jiyixiao1采纳,获得10
20秒前
大模型应助wyz采纳,获得10
20秒前
科研通AI6应助xiaoru采纳,获得50
21秒前
22秒前
LHY发布了新的文献求助10
23秒前
酷炫翠柏发布了新的文献求助10
24秒前
袁向薇完成签到,获得积分10
24秒前
吴洲凤完成签到 ,获得积分10
25秒前
27秒前
28秒前
一二完成签到,获得积分10
28秒前
两张发布了新的文献求助10
29秒前
高山和鸟完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716