Link prediction for knowledge graphs based on extended relational graph attention networks

计算机科学 知识图 图形 统计关系学习 理论计算机科学 人工智能 关系数据库 数据挖掘
作者
Zhanyue Cao,Chao Luo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:259: 125260-125260 被引量:7
标识
DOI:10.1016/j.eswa.2024.125260
摘要

• An novel link prediction framework based on entity-relation-level GAT. • Locally topological structures with relational features are hierarchically embedded. • The attention mechanism is used for the potential semantic information. Limited by the sufficiency and timeliness of information obtained, the connections among entities of knowledge graphs need to be updated continuously. Therefore, how to infer the possibility of linking between two unlinked entities with known information has important significance in real applications. Most existing works implemented the triple-level graph learning, which focused on the learning of graph features among triples but ignore triple-inside information. In this article, an entity-relation-level graph attention network model is proposed to fully learn the information of entities and relationships in the graph. Firstly, for each entity, the information of entities in their surrounding neighborhoods is learnt, and then the obtained information with relations of entities is integrated into the graph attention network for embeddings. Secondly, a novel entity and relation embedding method is implemented to map each element of the triple into the vector space for achieving deep interactions between entities and relations. Thirdly, ConvKB is used as decoder to complete the task of link prediction. Extensive experiments on real datasets show the promising results of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助小幸运采纳,获得10
2秒前
积极麦片发布了新的文献求助10
2秒前
无限荆完成签到 ,获得积分10
3秒前
李爱国应助自觉的溪灵采纳,获得10
3秒前
3秒前
咕咕咕发布了新的文献求助10
4秒前
YaRu应助kkkkk采纳,获得10
4秒前
小王爱吃香菜完成签到,获得积分20
5秒前
嘉欣完成签到,获得积分10
6秒前
drchen发布了新的文献求助10
7秒前
wanci应助称心香薇采纳,获得10
7秒前
7秒前
7秒前
meddy完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
10秒前
搜集达人应助Zzziihao采纳,获得10
10秒前
10秒前
10秒前
bulubulu发布了新的文献求助10
11秒前
牧笛发布了新的文献求助10
11秒前
12秒前
13秒前
14秒前
ymh发布了新的文献求助10
14秒前
认真飞瑶发布了新的文献求助10
14秒前
14秒前
14秒前
123wwb发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
充电宝应助至浩采纳,获得10
16秒前
16秒前
17秒前
椰子水完成签到,获得积分10
17秒前
发发发发布了新的文献求助10
17秒前
桐桐应助成就小刺猬采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589694
求助须知:如何正确求助?哪些是违规求助? 4674337
关于积分的说明 14793127
捐赠科研通 4628980
什么是DOI,文献DOI怎么找? 2532400
邀请新用户注册赠送积分活动 1501066
关于科研通互助平台的介绍 1468487