Enhanced photocatalysis-Fenton degradation of levofloxacin by Fe doped BiOCl microspheres with rich surface oxygen vacancies: The accelerated redox cycle of ≡Fe(III)/≡Fe(II)

光催化 降级(电信) 微球 氧化还原 兴奋剂 化学工程 氧气 材料科学 化学 催化作用 光化学 无机化学 有机化学 电信 光电子学 计算机科学 工程类
作者
Bingrui Ma,Yuxin Zha,Huanxin Shi,Yuxin Qin,Mingyue Zhao,Jincheng Li,Songxue Wang,Boyin Yan,Baoxiu Zhao,Yue Ma,Haijiao Xie
出处
期刊:Separation and Purification Technology [Elsevier BV]
卷期号:354: 129086-129086 被引量:10
标识
DOI:10.1016/j.seppur.2024.129086
摘要

The photocatalysis-Fenton process was considered as an effective water treatment method due to its superior efficiency and technical feasibility, but its application was limited by ≡Fe(III)/≡Fe(II). Herein, Fe doped BiOCl hierarchical microspheres with rich surface oxygen vacancies (Fe/BiOCl OVs) were synthesized to modulate the interface structure for efficient photocatalysis-Fenton degradation of levofloxacin (LEV). The systematic characterization analysis confirmed the existence of strong interfacial interactions, which facilitated the activation of H2O2 and the degradation of LEV. The synergism of metal deposition, OVs and surface plasmon resonance (SPR) effect of Bi contributed to the enhanced light absorption ability and suppressed carriers recombination. The LEV degradation efficiency reached 99.0% after 60-min photocatalysis-Fenton reaction. The interfacial charge transfer theory demonstrated that the presence of oxygen vacancies accelerated the redox cycle of ≡Fe(III)/≡Fe(II), which promoted the H2O2 activation to produce ·OH. The ·OH and e- played important roles during the photocatalysis-Fenton degradation of LEV, while ·O2–, 1O2 and h+ also contributed in LEV degradation. Based on density-functional theory (DFT) calculations and LC-MS analysis, four degradation pathways of LEV were proposed. The photocatalysis-Fenton degradation process of Fe/BiOCl OVs effectively reduced the toxicity of LEV, which ultimately mitigated the harmful effects of antibiotics on the environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助乐观的凝梦采纳,获得10
刚刚
DT发布了新的文献求助10
刚刚
研友_VZG7GZ应助轻松的代云采纳,获得10
1秒前
隐形曼青应助qingjiu采纳,获得10
1秒前
慕青应助机灵夜云采纳,获得10
2秒前
caojj发布了新的文献求助10
2秒前
brren发布了新的文献求助10
2秒前
FIN应助整齐荟采纳,获得30
3秒前
乐观小之应助整齐荟采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
CodeCraft应助coolplex采纳,获得10
4秒前
让我毕业完成签到,获得积分10
5秒前
5秒前
俏皮蜜蜂发布了新的文献求助10
5秒前
Andema完成签到,获得积分10
6秒前
科研通AI2S应助昂口3采纳,获得10
6秒前
生动元蝶发布了新的文献求助10
7秒前
三年半完成签到,获得积分10
7秒前
7秒前
迷路曼雁完成签到,获得积分10
7秒前
7秒前
lily发布了新的文献求助10
8秒前
gentille发布了新的文献求助10
8秒前
斯文败类应助晶镓万岁采纳,获得10
8秒前
星辰大海应助彭希帆采纳,获得10
9秒前
亮亮发布了新的文献求助10
9秒前
NexusExplorer应助可靠的冬菱采纳,获得10
10秒前
11秒前
11秒前
杨佳晨发布了新的文献求助10
11秒前
董方圆发布了新的文献求助10
11秒前
小罗同学发布了新的文献求助10
11秒前
优秀如雪完成签到,获得积分10
12秒前
整齐荟完成签到,获得积分10
12秒前
机灵夜云完成签到,获得积分10
13秒前
科文完成签到,获得积分10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344