Enhanced photocatalysis-Fenton degradation of levofloxacin by Fe doped BiOCl microspheres with rich surface oxygen vacancies: The accelerated redox cycle of ≡Fe(III)/≡Fe(II)

光催化 降级(电信) 微球 氧化还原 兴奋剂 化学工程 氧气 材料科学 化学 催化作用 光化学 无机化学 有机化学 电信 光电子学 计算机科学 工程类
作者
Bingrui Ma,Yuxin Zha,Huanxin Shi,Yuxin Qin,Mingyue Zhao,Jincheng Li,Songxue Wang,Boyin Yan,Baoxiu Zhao,Yue Ma,Haijiao Xie
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:354: 129086-129086 被引量:26
标识
DOI:10.1016/j.seppur.2024.129086
摘要

The photocatalysis-Fenton process was considered as an effective water treatment method due to its superior efficiency and technical feasibility, but its application was limited by ≡Fe(III)/≡Fe(II). Herein, Fe doped BiOCl hierarchical microspheres with rich surface oxygen vacancies (Fe/BiOCl OVs) were synthesized to modulate the interface structure for efficient photocatalysis-Fenton degradation of levofloxacin (LEV). The systematic characterization analysis confirmed the existence of strong interfacial interactions, which facilitated the activation of H2O2 and the degradation of LEV. The synergism of metal deposition, OVs and surface plasmon resonance (SPR) effect of Bi contributed to the enhanced light absorption ability and suppressed carriers recombination. The LEV degradation efficiency reached 99.0% after 60-min photocatalysis-Fenton reaction. The interfacial charge transfer theory demonstrated that the presence of oxygen vacancies accelerated the redox cycle of ≡Fe(III)/≡Fe(II), which promoted the H2O2 activation to produce ·OH. The ·OH and e- played important roles during the photocatalysis-Fenton degradation of LEV, while ·O2–, 1O2 and h+ also contributed in LEV degradation. Based on density-functional theory (DFT) calculations and LC-MS analysis, four degradation pathways of LEV were proposed. The photocatalysis-Fenton degradation process of Fe/BiOCl OVs effectively reduced the toxicity of LEV, which ultimately mitigated the harmful effects of antibiotics on the environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘惠兴发布了新的文献求助10
1秒前
sfafasfsdf发布了新的文献求助10
1秒前
凌云完成签到,获得积分10
2秒前
何柯应助袁浩宇采纳,获得10
2秒前
2秒前
xiuT发布了新的文献求助10
2秒前
碧蓝安露完成签到,获得积分10
2秒前
2秒前
小羊完成签到,获得积分20
2秒前
忠诚卫士完成签到,获得积分10
2秒前
大个应助Archer采纳,获得10
2秒前
安南发布了新的文献求助10
3秒前
天天快乐应助小靳采纳,获得10
4秒前
帅气鹭洋发布了新的文献求助10
4秒前
xiaoshulin完成签到,获得积分10
4秒前
5秒前
王丹丹发布了新的文献求助10
6秒前
打打应助dian采纳,获得10
6秒前
6秒前
AN关闭了AN文献求助
6秒前
whjbb完成签到,获得积分20
7秒前
7秒前
打打应助micexily采纳,获得10
8秒前
Sean完成签到,获得积分10
8秒前
科研通AI6应助小巧酸奶采纳,获得10
9秒前
xiuT完成签到,获得积分10
9秒前
王一正完成签到,获得积分10
10秒前
高级牛马完成签到 ,获得积分10
10秒前
10秒前
10秒前
科研互通完成签到,获得积分10
11秒前
huhdcid发布了新的文献求助10
12秒前
狗大王完成签到,获得积分10
12秒前
13秒前
13秒前
Sean发布了新的文献求助10
13秒前
14秒前
祝佳其完成签到 ,获得积分10
14秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484152
求助须知:如何正确求助?哪些是违规求助? 4584446
关于积分的说明 14397956
捐赠科研通 4514459
什么是DOI,文献DOI怎么找? 2474010
邀请新用户注册赠送积分活动 1459963
关于科研通互助平台的介绍 1433365