Potato Leaf Disease Classification Using Optimized Machine Learning Models and Feature Selection Techniques

特征选择 选择(遗传算法) 人工智能 机器学习 模式识别(心理学) 生物 计算机科学 植物
作者
Marwa Radwan,Amel Ali Alhussan,Abdelhameed Ibrahim‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬,Sayed M. Tawfeek
出处
期刊:Potato Research [Springer Nature]
被引量:1
标识
DOI:10.1007/s11540-024-09763-8
摘要

Abstract The diseases that particularly affect potato leaves are early blight and the late blight, and they are dangerous as they reduce yield and quality of the potatoes. In this paper, different machine learning (ML) models for predicting these diseases are analysed based on a detailed database of more than 4000 records of weather conditions. Some of the critical factors that have been investigated to determine correlations with disease prevalence include temperature, humidity, wind speed, and atmospheric pressure. These types of data relationships were comprehensively identified through sophisticated means of analysis such as K -means clustering, PCA, and copula analysis. To achieve this, several machine learning models were used in the study: logistic regression, gradient boosting, multilayer perceptron (MLP), and support vector machine (SVM), as well as K -nearest neighbor (KNN) models both with and without feature selection. Feature selection methods such as the binary Greylag Goose Optimization (bGGO) were applied to improve the predictive performance of the models by identifying feature sets pertinent to the models. Results demonstrated that the MLP model, with feature selection, achieved an accuracy of 98.3%, underscoring the critical role of feature selection in improving model performance. These findings highlight the importance of optimized ML models in proactive agricultural disease management, aiming to minimize crop loss and promote sustainable farming practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cyrus2022发布了新的文献求助30
1秒前
2秒前
小马甲应助肖雪依采纳,获得10
2秒前
彭于晏应助梁硕采纳,获得10
2秒前
jjjwln发布了新的文献求助10
4秒前
Owen应助ee采纳,获得10
4秒前
5秒前
大鱼完成签到,获得积分10
5秒前
5秒前
脆脆鲨发布了新的文献求助10
5秒前
情怀应助流川枫采纳,获得10
6秒前
天天快乐应助谦让谷菱采纳,获得10
6秒前
electronic完成签到,获得积分10
7秒前
田様应助hhan采纳,获得10
7秒前
kmoyy完成签到,获得积分10
9秒前
昏睡的半鬼完成签到 ,获得积分10
9秒前
9秒前
10秒前
Owen应助王晓风采纳,获得10
10秒前
10秒前
NexusExplorer应助陈陈采纳,获得10
10秒前
11秒前
左囧发布了新的文献求助10
11秒前
12秒前
13秒前
隐形曼青应助深情白风采纳,获得10
13秒前
浮云发布了新的文献求助10
14秒前
shanshan发布了新的文献求助50
14秒前
14秒前
jintian完成签到 ,获得积分10
14秒前
14秒前
15秒前
wmmm完成签到,获得积分10
15秒前
热心天佑完成签到,获得积分10
15秒前
默认用户名完成签到,获得积分10
17秒前
18秒前
研友_ZlPBDZ完成签到,获得积分10
18秒前
18秒前
不配.应助少少少采纳,获得10
18秒前
不可思宇完成签到,获得积分10
19秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3411041
求助须知:如何正确求助?哪些是违规求助? 3014509
关于积分的说明 8864142
捐赠科研通 2701959
什么是DOI,文献DOI怎么找? 1481413
科研通“疑难数据库(出版商)”最低求助积分说明 684839
邀请新用户注册赠送积分活动 679333