Fast and Accurate Recognition of Perovskite Fluorescent Anti-counterfeiting Labels Based on Lightweight Convolutional Neural Networks

随机性 材料科学 微尺度化学 钙钛矿(结构) 卷积神经网络 纳米晶 纳米技术 特征(语言学) 吞吐量 过程(计算) 模式识别(心理学) 计算机科学 人工智能 操作系统 电信 哲学 数学 数学教育 统计 语言学 工程类 化学工程 无线
作者
Yuexing Han,Shengqi Bao,Bori Shi,Jinbo Wu,Bing Wang,Peng Ding,Qiaochuan Chen
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (31): 41107-41118
标识
DOI:10.1021/acsami.4c06515
摘要

Anti-counterfeiting technology has always been a key issue in the field of information security. Physical Unclonable Function (PUF) labels, which are random patterns produced by a stochastic process, emerge as an effective anti-counterfeiting strategy due to the inherent randomness of their physical patterns. In this study, we developed a high-throughput droplet array generation technique based on surface tension confinement to prepare perovskite crystal films with controllable shapes and sizes. We utilized the random distribution of perovskite nanocrystal particles to construct the PUF textures of the labels. Compared to other anti-counterfeiting labels, our labels not only possess fluorescent properties but also feature microscale dimensions (less than 5.3 × 10–2mm2), low cost (less than 3 × 10–4 USD), and high encoding capacity (1.7 × 101956), providing support for multilevel anti-counterfeiting protection. Additionally, we introduce an innovative PUF recognition method based on a Partial Convolutional Network (PaCoNet), effectively addressing the limitations of previous methods, in terms of recognition accuracy and speed. Experimental validation on a data set of perovskite nanocrystal films with up to 60 different macroscopic shapes and unique microscopic textures demonstrates that our method achieves a recognition accuracy of up to 99.65% and significantly reduces the recognition time per image to just 0.177 s, highlighting the potential application of these labels in the field of anti-counterfeiting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wasd完成签到,获得积分20
刚刚
mumu发布了新的文献求助10
1秒前
1秒前
Orange应助晨陌兮客采纳,获得10
1秒前
qyzhu发布了新的文献求助10
1秒前
Lin发布了新的文献求助10
1秒前
2秒前
2秒前
xixi发布了新的文献求助20
2秒前
能干的邹发布了新的文献求助10
2秒前
Lynn发布了新的文献求助10
2秒前
坚果发布了新的文献求助10
3秒前
MHX发布了新的文献求助10
4秒前
汉堡包应助手可摘柠檬采纳,获得10
4秒前
HAPT发布了新的文献求助10
4秒前
moboneone完成签到,获得积分10
5秒前
搞怪腊肠完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
虚幻盼雁发布了新的文献求助10
6秒前
Chrischelsea完成签到,获得积分10
6秒前
大角牛发布了新的文献求助10
7秒前
淡淡大山发布了新的文献求助10
7秒前
SYLH应助bb采纳,获得10
8秒前
8秒前
wen完成签到,获得积分10
9秒前
10秒前
仁爱的元芹完成签到,获得积分10
11秒前
天真山槐发布了新的文献求助80
11秒前
11秒前
CipherSage应助xixi采纳,获得10
11秒前
天天快乐应助Chrischelsea采纳,获得10
11秒前
Lynn完成签到,获得积分10
12秒前
13秒前
13秒前
小蘑菇应助黯然采纳,获得10
13秒前
rengar发布了新的文献求助10
13秒前
14秒前
嘿嘿嘿完成签到,获得积分20
14秒前
嘻嘻哈哈发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970632
求助须知:如何正确求助?哪些是违规求助? 3515261
关于积分的说明 11177794
捐赠科研通 3250448
什么是DOI,文献DOI怎么找? 1795314
邀请新用户注册赠送积分活动 875781
科研通“疑难数据库(出版商)”最低求助积分说明 805073