On the learning of high order polynomial reconstructions for essentially non-oscillatory schemes

订单(交换) 多项式的 计算机科学 应用数学 数学 数学分析 经济 财务
作者
Vikas Kumar Jayswal,Ritesh Kumar Dubey
出处
期刊:Physica Scripta [IOP Publishing]
标识
DOI:10.1088/1402-4896/ad7f97
摘要

Abstract The demand for approximation accuracy and convergence behavior of the computed solution restricts the application of deep learning networks in the domain of scientific computing. Moreover, the recipe to create suitable synthetic data which can be used to have a good trained model is also not very clear. This study focuses on learning of third order essentially non-oscillatory (ENO) and weighted ENO (WENO) reconstructions using classification neural networks with small data sets. In particular, this work (i) proposes a novel way to obtain a third order WENO reconstruction which can be posed as classification problem, (ii) gives simple and novel approach to sample data sets which are small but rich enough to inherit the latent feature of inter-spatial regularity information in the constructed data, (iii) It is established that sampling of train data sets impacts quantitatively as well qualitatively the required accuracy and non-oscillatory properties of resulting ENO3 and WENO3 schemes, (iv) proposes to use a limiter based multi model to retain desired accuracy as well non-oscillatory properties of the resulting numerical schemes. Computational results are compared and presented to support the hypotheses and performance of learned networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助莫兮佐采纳,获得10
1秒前
豆豆完成签到,获得积分10
1秒前
季涵卿发布了新的文献求助10
1秒前
2秒前
yiding完成签到 ,获得积分10
2秒前
3秒前
彭于晏应助南提采纳,获得10
3秒前
5秒前
反方向的枫完成签到,获得积分10
5秒前
6秒前
6秒前
852应助图苏采纳,获得10
8秒前
风趣采白发布了新的文献求助10
8秒前
11秒前
junjieLIU发布了新的文献求助10
12秒前
xunyin完成签到,获得积分20
12秒前
完美世界应助风趣采白采纳,获得10
12秒前
一一应助Foremelon采纳,获得20
14秒前
莫兮佐完成签到,获得积分10
14秒前
15秒前
15秒前
Owen应助莫大采纳,获得10
16秒前
banbieshenlu完成签到,获得积分10
17秒前
19秒前
19秒前
21秒前
大乐子完成签到 ,获得积分10
21秒前
ding应助禾子采纳,获得10
23秒前
24秒前
lucky完成签到,获得积分10
26秒前
莫大发布了新的文献求助10
29秒前
隐形曼青应助CP小橙子采纳,获得10
30秒前
小马甲应助文艺的灯泡采纳,获得10
30秒前
30秒前
31秒前
8R60d8应助明理怜烟采纳,获得10
31秒前
研友_VZG7GZ应助ygl0217采纳,获得10
31秒前
32秒前
詹岱周完成签到 ,获得积分10
33秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206645
求助须知:如何正确求助?哪些是违规求助? 2856117
关于积分的说明 8102483
捐赠科研通 2521133
什么是DOI,文献DOI怎么找? 1354220
科研通“疑难数据库(出版商)”最低求助积分说明 641992
邀请新用户注册赠送积分活动 613192