On the learning of high order polynomial reconstructions for essentially non-oscillatory schemes

订单(交换) 多项式的 计算机科学 应用数学 数学 数学分析 财务 经济
作者
Vikas Kumar Jayswal,Ritesh Kumar Dubey
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (11): 116009-116009
标识
DOI:10.1088/1402-4896/ad7f97
摘要

Abstract Approximation accuracy and convergence behavior are essential required properties for the computed numerical solution of differential equations. These requirements restrict the application of deep learning networks in the domain of scientific computing. Moreover, the recipe to create suitable synthetic data which can be used to train a good model is also not very clear. This study focuses on learning of third order essentially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) reconstructions using classification neural networks with small data sets. In particular, this work (i) proposes a novel way to obtain a third order WENO reconstruction which can be posed as classification problem, (ii) gives simple and novel approach to sample data sets which are small but rich enough to inherit the latent feature of inter-spatial regularity information in the constructed data, (iii) it is established that sampling of train data sets impacts quantitatively as well as qualitatively the required accuracy and non-oscillatory properties of resulting ENO3 and WENO3 schemes, (iv) proposes to use a limiter based multi model to retain desired accuracy as well as non-oscillatory properties of the resulting numerical schemes. Computational results are given which established that learned networks perform well and retain the features of the reconstruction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时柚发布了新的文献求助10
刚刚
asule13发布了新的文献求助10
刚刚
3242晶完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
深情的幼南完成签到,获得积分10
1秒前
2秒前
2秒前
周周完成签到,获得积分10
2秒前
reirei应助xiaowang采纳,获得10
2秒前
魔幻擎宇发布了新的文献求助10
3秒前
3秒前
3秒前
顾矜应助SHD采纳,获得10
4秒前
4秒前
yxy完成签到,获得积分10
4秒前
愫浅发布了新的文献求助30
5秒前
5秒前
热爱生活的小彭完成签到,获得积分10
5秒前
周周发布了新的文献求助10
5秒前
臭学医的发布了新的文献求助10
5秒前
5秒前
丘比特应助415采纳,获得30
5秒前
橙子发布了新的文献求助10
6秒前
天边发布了新的文献求助10
6秒前
落寞冬云发布了新的文献求助10
7秒前
纯真醉波发布了新的文献求助10
7秒前
脑洞疼应助樱悼柳雪采纳,获得10
7秒前
yxy发布了新的文献求助10
7秒前
xiaowang完成签到,获得积分10
7秒前
8秒前
学术纣王发布了新的文献求助10
8秒前
xuzhu0907发布了新的文献求助10
8秒前
快乐科研发布了新的文献求助10
8秒前
zhengxinyang完成签到,获得积分10
8秒前
朴实的百招应助莫西莫西采纳,获得10
9秒前
梦XING发布了新的文献求助10
9秒前
10秒前
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974856
求助须知:如何正确求助?哪些是违规求助? 3519400
关于积分的说明 11198085
捐赠科研通 3255563
什么是DOI,文献DOI怎么找? 1797860
邀请新用户注册赠送积分活动 877208
科研通“疑难数据库(出版商)”最低求助积分说明 806219