Neural Correlates of Augmented Reality Safety Warnings: EEG Analysis of Situational Awareness and Cognitive Performance in Roadway Work Zones

形势意识 情境伦理学 脑电图 意识的神经相关物 认知 工作(物理) 心理学 认知心理学 增强现实 应用心理学 计算机科学 人机交互 社会心理学 工程类 神经科学 机械工程 航空航天工程
作者
Fatemeh Banani Ardecani,Amit Kumar,Sepehr Sabeti,Omidreza Shoghli
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.13623
摘要

Despite the research and implementation efforts involving various safety strategies, protocols, and technologies, work zone crashes and fatalities continue to occur at an alarming rate each year. This study investigates the neurophysiological responses to Augmented Reality safety warnings in roadway work zones under varying workload conditions. Using electroencephalogram (EEG) technology, we objectively assessed situational awareness, attention, and cognitive load in simulated low-intensity (LA) and moderate-intensity (MA) work activities. The research analyzed key EEG indicators including beta, gamma, alpha, and theta waves, as well as various combined wave ratios. Results revealed that AR warnings effectively triggered neurological responses associated with increased situational awareness and attention across both workload conditions. However, significant differences were observed in the timing and intensity of these responses. In the LA condition, peak responses occurred earlier (within 125 ms post-warning) and were more pronounced, suggesting a more robust cognitive response when physical demands were lower. Conversely, the MA condition showed delayed peak responses (125-250 ms post-warning) and more gradual changes, indicating a potential impact of increased physical activity on cognitive processing speed. These findings underscore the importance of considering physical workload when designing AR-based safety systems for roadway work zones. The research contributes to the understanding of how AR can enhance worker safety and provides insights for developing more effective, context-aware safety interventions in high-risk work environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LEle发布了新的文献求助10
刚刚
情怀应助科研小白采纳,获得10
1秒前
2秒前
Jack祺完成签到 ,获得积分10
3秒前
3秒前
小二郎应助Darling采纳,获得10
3秒前
周至发布了新的文献求助30
4秒前
二枫忆桑完成签到,获得积分10
4秒前
别叫我吃饭饭饭完成签到 ,获得积分10
4秒前
4秒前
唐文硕发布了新的文献求助10
4秒前
4秒前
郭郭发布了新的文献求助10
5秒前
小马甲应助zzzpf采纳,获得10
6秒前
8秒前
华仔应助CXJ采纳,获得10
8秒前
wangzilu发布了新的文献求助50
8秒前
郭亮完成签到 ,获得积分20
8秒前
ghx发布了新的文献求助10
10秒前
顾矜应助ballball233采纳,获得10
10秒前
wang11完成签到,获得积分10
11秒前
初空月儿完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助30
12秒前
爆米花应助管夜白采纳,获得10
12秒前
寒冷寻桃发布了新的文献求助10
13秒前
xcltzh2517完成签到,获得积分10
14秒前
14秒前
大个应助唐文硕采纳,获得10
14秒前
pig120完成签到 ,获得积分10
15秒前
lllllll完成签到,获得积分10
15秒前
星辰大海应助shiyongkang1采纳,获得20
18秒前
善学以致用应助多情如容采纳,获得10
18秒前
唐文硕完成签到,获得积分10
19秒前
qzz完成签到,获得积分10
19秒前
19秒前
19秒前
yan完成签到,获得积分10
21秒前
怜然完成签到,获得积分10
21秒前
李健的小迷弟应助仁爱嫣采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735045
求助须知:如何正确求助?哪些是违规求助? 5358060
关于积分的说明 15328419
捐赠科研通 4879484
什么是DOI,文献DOI怎么找? 2621957
邀请新用户注册赠送积分活动 1571152
关于科研通互助平台的介绍 1527932