A hierarchical deep reinforcement learning method for solving urban route planning problems under large-scale customers and real-time traffic conditions

强化学习 比例(比率) 计算机科学 线路规划 钢筋 人工智能 运输工程 运筹学 地理 地图学 工程类 结构工程
作者
Yuanyuan Li,Qingfeng Guan,Jun Feng Gu,X. S. Jiang,Li Yang
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:: 1-24 被引量:3
标识
DOI:10.1080/13658816.2024.2413394
摘要

As urbanization and economic growth advance, large-scale customers and real-time traffic conditions have become crucial factors in urban route planning. Deep reinforcement learning is considered the most effective method for solving urban route planning problems involving large-scale customers and real-time traffic conditions. Due to memory usage limitations, existing deep reinforcement learning methods cannot identify candidate customers or determine optimal travel routes in large-scale and real-time environments. To tackle these problems, this study introduces a hierarchical deep reinforcement learning method utilizing an improved transformer model (HDRLITF) based on the divide-and-conquer concept. Graph attention networks and gate mechanisms are integrated into the transformer model to capture dynamic features and improve the model's performance. A two-stage training method, based on the actor-critic algorithm, is proposed to determine the optimal policy function. To evaluate the HDRLITF method, experiments were conducted using datasets from the cities of Shenzhen and Chengdu in China. The experimental results suggest that the HDRLITF method can effectively interact with real-time traffic environments and obtain high-quality solutions compared to other deep reinforcement learning methods. The robustness and reliability of HDRLITF were further validated across multiple traffic scenarios and indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助yuqiu采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
health__up发布了新的文献求助10
2秒前
zdnhri发布了新的文献求助10
2秒前
快乐的小蘑菇完成签到,获得积分10
2秒前
传奇3应助田田田田采纳,获得10
2秒前
3秒前
斯文败类应助太叔若南采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
warmth完成签到,获得积分10
4秒前
4秒前
Ana发布了新的文献求助10
5秒前
Mmmm发布了新的文献求助10
6秒前
6秒前
斯文败类应助_蝴蝶小姐采纳,获得10
6秒前
sunny完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
星辰大海应助追寻的访烟采纳,获得10
7秒前
7秒前
争气完成签到,获得积分10
7秒前
7秒前
health__up完成签到,获得积分10
7秒前
科研通AI6应助biogarfield采纳,获得10
8秒前
8秒前
8秒前
证明发布了新的文献求助10
8秒前
星星人完成签到,获得积分10
9秒前
万能图书馆应助聪明梦容采纳,获得10
9秒前
超级小刺猬完成签到 ,获得积分10
9秒前
云渺完成签到,获得积分20
9秒前
量子星尘发布了新的文献求助10
9秒前
zcl应助zz123采纳,获得20
10秒前
高高白曼舞完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4671717
求助须知:如何正确求助?哪些是违规求助? 4051023
关于积分的说明 12527706
捐赠科研通 3744503
什么是DOI,文献DOI怎么找? 2067963
邀请新用户注册赠送积分活动 1097323
科研通“疑难数据库(出版商)”最低求助积分说明 977487