Learnable Brain Connectivity Structures for Identifying Neurological Disorders

计算机科学 机器学习 推论 人工智能 稳健性(进化) 图形 可学性 人工神经网络 理论计算机科学 生物化学 化学 基因
作者
Zhengwang Xia,Tao Zhou,Zhuqing Jiao,Jianfeng Lu
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsre.2024.3446588
摘要

Brain networks/graphs have been widely recognized as powerful and efficient tools for identifying neurological disorders. In recent years, various graph neural network models have been developed to automatically extract features from brain networks. However, a key limitation of these models is that the inputs, namely brain networks/graphs, are constructed using predefined statistical metrics (e.g., Pearson correlation) and are not learnable. The lack of learnability restricts the flexibility of these approaches. While statistically-specific brain networks can be highly effective in recognizing certain diseases, their performance may not exhibit robustness when applied to other types of brain disorders. To address this issue, we propose a novel module called Brain Structure Inference (termed BSI), which can be seamlessly integrated with multiple downstream tasks within a unified framework, enabling end-to-end training. It is highly flexible to learn the most beneficial underlying graph structures directly for specific downstream tasks. The proposed method achieves classification accuracies of 74.83% and 79.18% on two publicly available datasets, respectively. This suggests an improvement of at least 3% over the best-performing existing methods for both tasks. In addition to its excellent performance, the proposed method is highly interpretable, and the results are generally consistent with previous findings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cwx发布了新的文献求助10
刚刚
jzs完成签到 ,获得积分10
刚刚
内向大碗关注了科研通微信公众号
1秒前
1秒前
洛洛落发布了新的文献求助10
1秒前
ljw完成签到,获得积分10
3秒前
晓晓雪完成签到,获得积分10
4秒前
WonderHua完成签到,获得积分10
5秒前
聪明的破茧完成签到,获得积分10
5秒前
zxcharm完成签到,获得积分10
5秒前
健忘的飞雪完成签到,获得积分10
5秒前
沐1217完成签到,获得积分10
5秒前
忘崽子小拳头完成签到,获得积分10
5秒前
温暖大米完成签到 ,获得积分10
6秒前
cherrychou完成签到,获得积分10
6秒前
SSDlk发布了新的文献求助10
7秒前
konkon完成签到,获得积分10
7秒前
Survivor完成签到 ,获得积分10
8秒前
冷傲的水壶完成签到,获得积分10
9秒前
scixuxu完成签到,获得积分10
10秒前
记号完成签到,获得积分10
10秒前
yunchaozhang发布了新的文献求助10
10秒前
cwx完成签到,获得积分10
10秒前
Skywalker完成签到,获得积分10
11秒前
甜美的海瑶完成签到 ,获得积分10
12秒前
zhang完成签到,获得积分10
12秒前
大猩猩完成签到 ,获得积分10
13秒前
Linux2000Pro完成签到,获得积分10
14秒前
Moon完成签到 ,获得积分10
14秒前
15秒前
小垃圾完成签到,获得积分10
15秒前
爱静静完成签到,获得积分0
16秒前
零度沸腾完成签到 ,获得积分10
16秒前
16秒前
mushini完成签到,获得积分10
16秒前
BlingBling完成签到,获得积分10
17秒前
yunchaozhang完成签到,获得积分10
17秒前
18秒前
zhaowenxian发布了新的文献求助10
19秒前
Leo000007完成签到,获得积分10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248923
求助须知:如何正确求助?哪些是违规求助? 2892318
关于积分的说明 8270639
捐赠科研通 2560627
什么是DOI,文献DOI怎么找? 1389125
科研通“疑难数据库(出版商)”最低求助积分说明 651004
邀请新用户注册赠送积分活动 627855