Learnable Brain Connectivity Structures for Identifying Neurological Disorders

计算机科学 机器学习 推论 人工智能 稳健性(进化) 图形 可学性 人工神经网络 理论计算机科学 生物化学 化学 基因
作者
Zhengwang Xia,Tao Zhou,Zhuqing Jiao,Jianfeng Lu
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsre.2024.3446588
摘要

Brain networks/graphs have been widely recognized as powerful and efficient tools for identifying neurological disorders. In recent years, various graph neural network models have been developed to automatically extract features from brain networks. However, a key limitation of these models is that the inputs, namely brain networks/graphs, are constructed using predefined statistical metrics (e.g., Pearson correlation) and are not learnable. The lack of learnability restricts the flexibility of these approaches. While statistically-specific brain networks can be highly effective in recognizing certain diseases, their performance may not exhibit robustness when applied to other types of brain disorders. To address this issue, we propose a novel module called Brain Structure Inference (termed BSI), which can be seamlessly integrated with multiple downstream tasks within a unified framework, enabling end-to-end training. It is highly flexible to learn the most beneficial underlying graph structures directly for specific downstream tasks. The proposed method achieves classification accuracies of 74.83% and 79.18% on two publicly available datasets, respectively. This suggests an improvement of at least 3% over the best-performing existing methods for both tasks. In addition to its excellent performance, the proposed method is highly interpretable, and the results are generally consistent with previous findings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Chemistry发布了新的文献求助10
刚刚
cui123发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
猫困应助Liury采纳,获得10
2秒前
丘比特应助平常的凝蕊采纳,获得10
2秒前
yin发布了新的文献求助10
3秒前
XHH1994完成签到,获得积分10
3秒前
3秒前
4秒前
小橙子发布了新的文献求助10
4秒前
LCC发布了新的文献求助10
5秒前
后来发布了新的文献求助10
5秒前
alex完成签到 ,获得积分10
5秒前
jialin发布了新的文献求助10
5秒前
6秒前
萌龙完成签到,获得积分20
7秒前
淡淡日记本完成签到,获得积分10
7秒前
爆米花应助旋转的龙采纳,获得10
7秒前
cc发布了新的文献求助10
7秒前
摆烂完成签到,获得积分10
8秒前
8秒前
8秒前
風之歌完成签到,获得积分10
8秒前
9秒前
坦率的匪应助小刘采纳,获得10
9秒前
jialin完成签到,获得积分10
9秒前
幽默的溪灵应助Felix采纳,获得10
9秒前
11秒前
12秒前
Owen应助宁阿霜采纳,获得20
12秒前
12秒前
12秒前
13秒前
后来完成签到,获得积分10
13秒前
an发布了新的文献求助10
15秒前
好运莲莲发布了新的文献求助10
15秒前
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979332
求助须知:如何正确求助?哪些是违规求助? 3523278
关于积分的说明 11216934
捐赠科研通 3260722
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878862
科研通“疑难数据库(出版商)”最低求助积分说明 807113