Novel electro-assisted micro-aerobic cathode biological technology induces oxidative demethylation of N, N-dimethylformamide for efficient ammonification of refractory membrane-making wastewater

化学 废水 生物降解 氮气循环 去甲基化 生物化学 环境化学 氮气 有机化学 废物管理 基因 工程类 基因表达 DNA甲基化
作者
Guang Yang,Hui Xu,Yudong Luo,Shengqiang Hei,Guangqing Song,Xia Huang
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:442: 130001-130001 被引量:12
标识
DOI:10.1016/j.jhazmat.2022.130001
摘要

Recalcitrant and toxicological membrane-making wastewater displays negative impacts on environment, and this is difficult to treat efficiently using conventional hydrolytic acidification. In this study, a novel electro-assisted biological reactor with micro-aerobic cathode (EABR-MAC) was developed to improve the biodegradation and ammonification of N, N-dimethylformamide (DMF) in membrane-making wastewater, and the metabolic mechanism using metagenomic sequencing as comprehensively illustrated. The results showed that EABR-MAC significantly improved the ammonification of refractory organonitrogen and promoted DMF oxidative degradation by driving the electron transferred to the cathode. Additionally, the inhibition rates of oxygen uptake rate and nitrification in EABR-MAC were both lower under different cathode aeration frequency conditions. Microbial community analysis indicated that the functional fermentation bacteria and exoelectrogens, which were correlated with COD removal, ammonification, and detoxification, were significantly enriched upon electrostimulation, and the positive biological connections increased to form highly connected communities instead of competition. The functional genes revealed that EABR-MAC forcefully intervened with the metabolic pathway, so that DMF converted to formamide and ammonia by oxidative demethylation and formamide hydrolysis. The results of this study provide a promising strategy for efficient conversion of organonitrogen into ammonia nitrogen, and offer a new insight into the effects of electrostimulation on microbial metabolism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
甜心院士应助萧匕采纳,获得10
1秒前
2秒前
Owen应助sxp1031采纳,获得10
2秒前
Kuzu完成签到,获得积分10
2秒前
3秒前
PenguinYW应助深情香寒采纳,获得20
3秒前
郭翔发布了新的文献求助10
3秒前
英俊的铭应助霹雳小土豆-采纳,获得10
4秒前
李小宁发布了新的文献求助10
4秒前
ruyan发布了新的文献求助30
5秒前
toey完成签到 ,获得积分10
5秒前
Ducky完成签到,获得积分10
5秒前
6秒前
btsforever发布了新的文献求助10
6秒前
veroniii发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
汉堡包应助吴彦祖采纳,获得10
8秒前
Ajjanna完成签到,获得积分20
8秒前
ku发布了新的文献求助10
8秒前
苹果小玉关注了科研通微信公众号
9秒前
FashionBoy应助皮灵犀采纳,获得10
9秒前
9秒前
9秒前
李小宁完成签到,获得积分10
9秒前
11秒前
11秒前
Ajjanna发布了新的文献求助10
11秒前
典雅的静发布了新的文献求助10
12秒前
12秒前
xj发布了新的文献求助10
12秒前
12秒前
wangfugui完成签到,获得积分10
13秒前
领导范儿应助李小宁采纳,获得10
13秒前
lalala应助925采纳,获得10
13秒前
思源应助难过乘风采纳,获得10
14秒前
爆米花应助鑫问采纳,获得10
14秒前
虚幻白桃发布了新的文献求助60
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514383
求助须知:如何正确求助?哪些是违规求助? 3096829
关于积分的说明 9232784
捐赠科研通 2791814
什么是DOI,文献DOI怎么找? 1532045
邀请新用户注册赠送积分活动 711754
科研通“疑难数据库(出版商)”最低求助积分说明 707031