类有机物
人工智能
分割
计算机科学
深度学习
计算机视觉
工作流程
卷积神经网络
图像分割
模式识别(心理学)
跟踪(教育)
生物
神经科学
心理学
教育学
数据库
作者
Lucia Hradecka,David Wiesner,Jakub Sumbal,Zuzana Koledová,Martin Maška
出处
期刊:IEEE Transactions on Medical Imaging
[Institute of Electrical and Electronics Engineers]
日期:2022-09-28
卷期号:42 (1): 281-290
被引量:10
标识
DOI:10.1109/tmi.2022.3210714
摘要
We present an automated and deep-learning-based workflow to quantitatively analyze the spatiotemporal development of mammary epithelial organoids in two-dimensional time-lapse (2D+t) sequences acquired using a brightfield microscope at high resolution. It involves a convolutional neural network (U-Net), purposely trained using computer-generated bioimage data created by a conditional generative adversarial network (pix2pixHD), to infer semantic segmentation, adaptive morphological filtering to identify organoid instances, and a shape-similarity-constrained, instance-segmentation-correcting tracking procedure to reliably cherry-pick the organoid instances of interest in time. By validating it using real 2D+t sequences of mouse mammary epithelial organoids of morphologically different phenotypes, we clearly demonstrate that the workflow achieves reliable segmentation and tracking performance, providing a reproducible and laborless alternative to manual analyses of the acquired bioimage data.
科研通智能强力驱动
Strongly Powered by AbleSci AI