Integrated Backup Rolling Stock Allocation and Timetable Rescheduling with Uncertain Time-Variant Passenger Demand Under Disruptive Events

备份 运筹学 计算机科学 火车 人群 数学优化 瓶颈 调度(生产过程) 随机规划 运输工程 工程类 数学 地图学 计算机安全 数据库 地理 嵌入式系统
作者
Jiateng Yin,Lixing Yang,Andrea D’Ariano,Tao Tang,Ziyou Gao
出处
期刊:Informs Journal on Computing 卷期号:34 (6): 3234-3258 被引量:35
标识
DOI:10.1287/ijoc.2022.1233
摘要

Railway traffic management focuses on regulating train movements and delivering improved service quality to passengers; however, such efforts are subject to many uncertainties in terms of disruptions and passenger demand on a rail transit line. In contrast to most existing studies, which focus on the rescheduling of passenger timetables in a deterministic framework, this study proposes a two-stage stochastic optimization model for allocating backup rolling stocks (BRS) to storage lines to reschedule the timetable and serve passengers delayed by disruptions. The first stage is an assignment problem to determine the optimal plan for the allocation of BRS to storage lines to achieve a good trade-off between the investment cost for the BRS and the expected travel time of delayed passengers across different stochastic scenarios. The second stage is explicitly formulated as a network flow model to optimize the timetable of the delayed trains on the tracks and the BRS from the storage lines such that the passenger travel time is minimized under each stochastic scenario. To improve the efficiency of convergence, we develop an improved L-shaped method with several accelerating techniques. Among these, we show that the classical integer L-shaped cut can be tightened given the property of the second-stage problem, which can also be generalized to other two-stage integer stochastic programs. Real-world case studies based on historical data from the Beijing metro verify the effectiveness of the proposed approach in reducing the travel time for passengers. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Funding: This research was supported by the National Natural Science Foundation of China [Grants 71621001, 71825004, and 71901016]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplementary Information [ https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.1233 ] or is available from the IJOC GitHub software repository ( https://github.com/INFORMSJoC ) at [ http://dx.doi.org/10.5281/zenodo.6892548 ].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚子发布了新的文献求助10
1秒前
1秒前
peipei完成签到,获得积分10
6秒前
sajdhjas发布了新的文献求助10
7秒前
坚强似狮完成签到,获得积分10
9秒前
9秒前
yx完成签到 ,获得积分10
9秒前
10秒前
13秒前
柚子完成签到,获得积分10
14秒前
Qianbaor68应助memter采纳,获得80
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得20
15秒前
Orange应助科研通管家采纳,获得30
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
15秒前
一心向雨发布了新的文献求助10
15秒前
16秒前
17秒前
欢呼凡旋完成签到,获得积分10
17秒前
留白完成签到 ,获得积分10
19秒前
shepherd发布了新的文献求助10
19秒前
sajdhjas完成签到,获得积分10
19秒前
超级小刺猬完成签到 ,获得积分10
19秒前
20秒前
科研通AI5应助DK采纳,获得10
20秒前
景笑天发布了新的文献求助10
21秒前
21秒前
Johnyang发布了新的文献求助30
21秒前
燧人氏发布了新的文献求助10
22秒前
24秒前
bbll完成签到,获得积分10
24秒前
盐汽水发布了新的文献求助10
25秒前
领导范儿应助小全采纳,获得10
26秒前
思源应助ywqu采纳,获得10
27秒前
baobao完成签到,获得积分10
27秒前
景笑天完成签到,获得积分10
28秒前
燧人氏完成签到,获得积分10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737385
求助须知:如何正确求助?哪些是违规求助? 3281209
关于积分的说明 10023728
捐赠科研通 2997939
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782304
科研通“疑难数据库(出版商)”最低求助积分说明 749762