纳米载体
脂肪组织
化学
内吞作用
脂质体
肽
受体
药物输送
细胞生物学
生物物理学
PEG比率
生物化学
生物
财务
经济
有机化学
作者
Md. Nazir Hossen,Kazuaki Kajimoto,Hidetaka Akita,Mamoru Hyodo,Taichi Ishitsuka,Hideyoshi Harashima
标识
DOI:10.1016/j.jconrel.2010.07.100
摘要
Ligand-based targeted delivery is an emerging platform in nanomedicine. We report herein on a peptide modified nanocarrier for a ligand-based targeted delivery system. The liposomal surface of the carrier was first modified with a linear peptide, followed by an adipose tissue-specific circular peptide (KGGRAKD) via a polyethylene glycol (PEG) spacer. To evaluate the specificity of the carrier, we purified primary cells from the endothelium of adipose tissue. The liposomes bound only to isolated primary cultured endothelial cells derived from inguinal adipose tissue (pcEC-IWAT) and not to other endothelial cell lines, such as MBEC-4 and MFLM-4. Cellular uptake was confirmed both qualitatively and quantitatively by confocal laser scanning microscopy (CLSM) and flow cytometry. The mechanism for the intracellular uptake of tPep-PEG-LPs into pcEC-IWAT, as evidenced by three independent experiments, involves saturation of receptor binding sites by excess free peptide, the blocking of receptors by an anti-prohibitin antibody and low temperature (4 °C) experiments, resulting in the inhibition of uptake of tPep-PEG-LPs into pcEC-IWAT, suggesting that receptor mediated endocytosis largely contributed to the observed cellular uptake. A co-localization study using double labeled modified liposomes (lipid membrane: NBD-DOPE and aqueous phase: rhodamine) indicated that a predominant part of tPep-PEG-LPs was found without co-localization with lysosomes and retained their intactness. The selective delivery of tPep-PEG-LPs to endothelial cells in adipose tissue represents a potential approach for the design of diverse nanocarrier-based targeted delivery systems for targeting the vasculature in adipose tissue.
科研通智能强力驱动
Strongly Powered by AbleSci AI