Faster R-CNN for Detection of Carotid Plaque on Ultrasound Images

卷积神经网络 人工智能 计算机科学 模式识别(心理学) 计算机视觉 特征提取 特征(语言学) 哲学 语言学
作者
Xiangjing An,Guoliang Ye,Xiaoan Zhou,Zhibin Jiao,Shangwei Ding,Yanhua Xie
标识
DOI:10.1109/comcomap46287.2019.9018679
摘要

Carotid plaque is an important indicator in clinical diagnosis to whether it causes cardiovascular and cerebrovascular diseases. Due to the complexity of the principle of US imaging, doctors are cumbersome and mechanical in identifying plaque hardening inside blood vessels, it takes doctors some time to identify carotid plaque. In this study, Inception network is used as a pre-training network to extract the feature map of the image, and the recommendation information of plaque or sclerosis is extracted by the RPN network (Region Proposal Network) in Faster R-CNN to realize the automated target detection of carotid US image plaque or sclerosis. The carotid US dataset (687 images) was made and the marker categories were divided into: plaque, sclerosis, psudomorph and normal, enabling end-to-end training in convolutional neural networks, with the two category of psudomorph and normal is to make the model more fault tolerant. Adjust the parameters, configuration, and network structure of the network to analyze the plaque target detection performance. Finally, the Average Precision(AP) with carotid plaque on the carotid US test set was 91.09%, and the mean Average Precision(mAP) was 58.62%. The stability and detection rate of the model met certain application requirements, and the better automatic target detection effect could be achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Werido完成签到 ,获得积分10
刚刚
1秒前
酷波er应助12采纳,获得10
1秒前
互认完成签到,获得积分10
2秒前
我也完成签到,获得积分10
2秒前
Ava应助viavia采纳,获得10
3秒前
tt耶发布了新的文献求助10
3秒前
hey完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
怕黑的静蕾应助Hancock采纳,获得10
6秒前
欧博完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
dreamlife发布了新的文献求助30
9秒前
9秒前
安详凡发布了新的文献求助10
10秒前
ding应助焕颜采纳,获得10
10秒前
开放访天完成签到 ,获得积分0
12秒前
KjLumos完成签到,获得积分10
13秒前
donesonna发布了新的文献求助10
14秒前
viavia发布了新的文献求助10
14秒前
悦耳溪流完成签到,获得积分10
14秒前
万能图书馆应助Shennnn采纳,获得10
14秒前
14秒前
15秒前
15秒前
灵巧阑香完成签到,获得积分10
15秒前
16秒前
aaaa完成签到,获得积分10
18秒前
smottom应助CHEN__02_采纳,获得10
18秒前
慕青应助li采纳,获得10
19秒前
英俊的铭应助ZhijunXiang采纳,获得10
19秒前
aabsd完成签到,获得积分10
19秒前
Benliu发布了新的文献求助10
19秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421