User Placement and Optimal Cooling Energy for Co-working Building Spaces

暖通空调 热舒适性 执行机构 可扩展性 计算机科学 启发式 平面图(考古学) 楼宇自动化 高效能源利用 模拟 运筹学 空调 工程类 机械工程 人工智能 历史 物理 电气工程 考古 数据库 热力学
作者
Srinarayana Nagarathinam,Arunchandar Vasan,Venkatesh Sarangan,Rajesh Jayaprakash,Anand Sivasubramaniam
出处
期刊:ACM Transactions on Cyber-Physical Systems [Association for Computing Machinery]
卷期号:5 (2): 1-24 被引量:14
标识
DOI:10.1145/3432818
摘要

Increasing real estate and other infrastructure costs have resulted in the trend of co-working offices where users pay as they use for individual desks. Co-working offices that provide personalized comfort need to address users with potentially widely varying thermal comfort preferences. Providing personalized comfort in cabins separated by physical partitions with neighboring thermal zones or open-plan offices with a single actuator has received attention in the literature. In this article, the problem of minimizing user discomfort in open-plan co-working offices with multiple actuators while being cognizant of the energy consumed is considered. Specifically, the decision problems of assigning users to desks based on their thermal preferences and jointly controlling the multiple actuators are addressed. The non-linearities in the underlying thermodynamic constraints and the seating decision together make the problem computationally hard. A two-step heuristic that addresses these issues is presented. First, using a model that accounts for spatio-temporal thermodynamics, a one-time assignment of users to desks is performed that reduces the thermal resistance faced by the HVAC systems to provide the preferred comfort levels. Next, the setpoints are decided for all actuators to jointly minimize user discomfort by optimization and model-predictive control. Further, scalability is addressed by clustering user preferences and the associated HVAC actuators’ setpoints for the cases where a large number of actuators may be present in the room.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqh完成签到,获得积分20
1秒前
1秒前
嘎嘎顺利发布了新的文献求助10
1秒前
按住心动完成签到,获得积分10
2秒前
星辰大海应助屁王采纳,获得10
2秒前
Owen应助彬彬采纳,获得10
3秒前
3秒前
Jasen完成签到,获得积分10
3秒前
轻轻地呼吸完成签到,获得积分10
3秒前
3秒前
明天更好发布了新的文献求助10
3秒前
4秒前
猪血糕yu完成签到,获得积分10
4秒前
通~发布了新的文献求助10
4秒前
5秒前
科研小垃圾完成签到,获得积分10
5秒前
6秒前
生动的煎蛋完成签到,获得积分10
6秒前
NexusExplorer应助marinemiao采纳,获得10
6秒前
CXS完成签到,获得积分10
7秒前
7秒前
7秒前
小郭完成签到,获得积分10
7秒前
7秒前
123发布了新的文献求助10
8秒前
NN123完成签到 ,获得积分10
8秒前
FFFFFFF应助艺玲采纳,获得10
9秒前
袁访天发布了新的文献求助10
9秒前
辇道增七完成签到,获得积分10
9秒前
9秒前
幽默的太阳完成签到 ,获得积分10
10秒前
10秒前
Nininni完成签到,获得积分10
10秒前
Tao完成签到,获得积分10
10秒前
10秒前
zqh发布了新的文献求助10
10秒前
10秒前
虫虫发布了新的文献求助10
11秒前
无情豪英完成签到 ,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740