Automated ground filtering of LiDAR and UAS point clouds with metaheuristics

元启发式 计算机科学 算法 点(几何) 激光雷达 点云 数据挖掘 遥感 人工智能 数学 地质学 几何学
作者
Volkan Yilmaz
出处
期刊:Optics and Laser Technology [Elsevier BV]
卷期号:138: 106890-106890 被引量:9
标识
DOI:10.1016/j.optlastec.2020.106890
摘要

• This study proposed to optimize the CSF algorithm with metaheuristics. • The Grey Wolf Optimizer and Jaya algorithms were used for optimization. • Proposed methods were found to be successful in optimizing the filtering results. The ground filtering is essential for the extraction of the topography of the bare Earth surface. Various ground filtering methods have been developed, especially in the last three decades. The main disadvantage of the ground filtering methods is that their performances are highly dependent on some user-defined parameter values. Hence, the analysts usually have to try a large number of parameter values until the optimum ground filtering result is achieved, which is neither practical nor time-efficient, especially for topographies with abrupt elevation changes. In addition, inappropriate parameter values may lead to the misclassification of the points that belong to the ground surface and to the above-ground objects. In cases where the analyst is not experienced in ground filtering, classification errors are expected to increase significantly. This reveals the necessity of an automated ground filtering strategy to avoid the user intervention for minimum classification errors. Hence, this study proposed to automate one of the most successful ground filtering methods, cloth simulation filtering (CSF), through algorithm-specific parameter-free metaheuristic optimization algorithms Grey Wolf Optimizer (GWO) and Jaya. The performances of the proposed GWO-based CSF (GWO-CSF) and Jaya-based CSF (Jaya-CSF) methods were tested on three LiDAR and two UAS point clouds. The results of the GWO-CSF and Jaya-CSF methods were qualitatively and quantitatively compared against those of the widely-used ground filtering methods progressive morphological 2D (PM2D), maximum local slope (MLS), elevation threshold with expand window (ETEW), multi-scale curvature classification (MCC), Boise Centre Aerospace Laboratory LiDAR (BCAL), gLiDAR, progressive triangulated irregular network densification (PTD) and standard CSF in five test sites. The performance evaluations revealed that the proposed GWO-CSF and Jaya-CSF methods did not only outperform the standard CSF, but also the other filtering methods used. The GWO-CSF and Jaya-CSF methods were also found to achieve the best balance between the omission and commission errors. It was also concluded that the GWO-CSF and Jaya-CSF methods did not only perform well on gentle slopes, but also on sloping terrains with various large complex-shaped above ground objects. Another important conclusion is that the GWO-CSF and Jaya-CSF methods presented a very high filtering performance on both LiDAR and UAS point clouds. The proposed methods managed to automate the filtering process, minimizing the filtering errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助纪富采纳,获得10
2秒前
Ting发布了新的文献求助10
2秒前
忧虑的慕山完成签到,获得积分10
3秒前
qian完成签到 ,获得积分10
3秒前
科研小白完成签到,获得积分10
3秒前
ele_yuki完成签到,获得积分10
4秒前
夜雨完成签到,获得积分10
4秒前
5秒前
YamDaamCaa应助N0V1CE采纳,获得50
6秒前
田様应助HelloKun采纳,获得10
6秒前
7秒前
覃纪隆完成签到,获得积分10
8秒前
9秒前
Leukocyte完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
宇宙第一帅完成签到,获得积分10
10秒前
墨菲特关注了科研通微信公众号
10秒前
10秒前
12秒前
SXYYXS完成签到 ,获得积分10
13秒前
14秒前
14秒前
ClaudiaCY发布了新的文献求助10
15秒前
candy发布了新的文献求助10
15秒前
豆芽完成签到,获得积分10
15秒前
pluto应助wml采纳,获得10
16秒前
iui飞完成签到,获得积分10
16秒前
16秒前
IyGnauH完成签到 ,获得积分10
17秒前
17秒前
19秒前
小巧的虔发布了新的文献求助10
19秒前
iui飞发布了新的文献求助10
19秒前
科研通AI2S应助jiang采纳,获得10
19秒前
小青龙完成签到,获得积分10
20秒前
ws完成签到,获得积分20
21秒前
21秒前
天天快乐应助1234采纳,获得10
22秒前
PRIPRO发布了新的文献求助10
22秒前
萧萧完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969940
求助须知:如何正确求助?哪些是违规求助? 3514642
关于积分的说明 11175298
捐赠科研通 3249947
什么是DOI,文献DOI怎么找? 1795178
邀请新用户注册赠送积分活动 875617
科研通“疑难数据库(出版商)”最低求助积分说明 804891