已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated ground filtering of LiDAR and UAS point clouds with metaheuristics

元启发式 计算机科学 算法 点(几何) 激光雷达 点云 数据挖掘 遥感 人工智能 数学 地质学 几何学
作者
Volkan Yilmaz
出处
期刊:Optics and Laser Technology [Elsevier BV]
卷期号:138: 106890-106890 被引量:9
标识
DOI:10.1016/j.optlastec.2020.106890
摘要

• This study proposed to optimize the CSF algorithm with metaheuristics. • The Grey Wolf Optimizer and Jaya algorithms were used for optimization. • Proposed methods were found to be successful in optimizing the filtering results. The ground filtering is essential for the extraction of the topography of the bare Earth surface. Various ground filtering methods have been developed, especially in the last three decades. The main disadvantage of the ground filtering methods is that their performances are highly dependent on some user-defined parameter values. Hence, the analysts usually have to try a large number of parameter values until the optimum ground filtering result is achieved, which is neither practical nor time-efficient, especially for topographies with abrupt elevation changes. In addition, inappropriate parameter values may lead to the misclassification of the points that belong to the ground surface and to the above-ground objects. In cases where the analyst is not experienced in ground filtering, classification errors are expected to increase significantly. This reveals the necessity of an automated ground filtering strategy to avoid the user intervention for minimum classification errors. Hence, this study proposed to automate one of the most successful ground filtering methods, cloth simulation filtering (CSF), through algorithm-specific parameter-free metaheuristic optimization algorithms Grey Wolf Optimizer (GWO) and Jaya. The performances of the proposed GWO-based CSF (GWO-CSF) and Jaya-based CSF (Jaya-CSF) methods were tested on three LiDAR and two UAS point clouds. The results of the GWO-CSF and Jaya-CSF methods were qualitatively and quantitatively compared against those of the widely-used ground filtering methods progressive morphological 2D (PM2D), maximum local slope (MLS), elevation threshold with expand window (ETEW), multi-scale curvature classification (MCC), Boise Centre Aerospace Laboratory LiDAR (BCAL), gLiDAR, progressive triangulated irregular network densification (PTD) and standard CSF in five test sites. The performance evaluations revealed that the proposed GWO-CSF and Jaya-CSF methods did not only outperform the standard CSF, but also the other filtering methods used. The GWO-CSF and Jaya-CSF methods were also found to achieve the best balance between the omission and commission errors. It was also concluded that the GWO-CSF and Jaya-CSF methods did not only perform well on gentle slopes, but also on sloping terrains with various large complex-shaped above ground objects. Another important conclusion is that the GWO-CSF and Jaya-CSF methods presented a very high filtering performance on both LiDAR and UAS point clouds. The proposed methods managed to automate the filtering process, minimizing the filtering errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bnjb完成签到,获得积分10
1秒前
lyon完成签到,获得积分10
3秒前
aa完成签到,获得积分10
5秒前
8秒前
饿哭了塞完成签到 ,获得积分10
10秒前
漂亮白枫发布了新的文献求助10
14秒前
16秒前
共享精神应助niu采纳,获得10
16秒前
Li完成签到,获得积分10
17秒前
研友_VZG7GZ应助拼搏的松鼠采纳,获得10
19秒前
轻松元绿完成签到 ,获得积分10
22秒前
执着的夜蓉完成签到,获得积分10
23秒前
23秒前
SciGPT应助1234567采纳,获得10
23秒前
田様应助漂亮白枫采纳,获得10
24秒前
24秒前
成就的笑南完成签到 ,获得积分10
26秒前
耶耶完成签到 ,获得积分10
26秒前
kw98完成签到 ,获得积分10
27秒前
哭泣灯泡完成签到,获得积分10
28秒前
普萘洛尔完成签到,获得积分10
28秒前
niu发布了新的文献求助10
28秒前
chem-w完成签到,获得积分20
29秒前
烊驼完成签到,获得积分10
30秒前
爆米花应助科研通管家采纳,获得10
30秒前
Lily应助科研通管家采纳,获得10
30秒前
共享精神应助科研通管家采纳,获得10
30秒前
30秒前
CipherSage应助科研通管家采纳,获得10
31秒前
31秒前
丘比特应助科研通管家采纳,获得10
31秒前
Akim应助科研通管家采纳,获得10
31秒前
传奇3应助科研通管家采纳,获得10
31秒前
Lily应助科研通管家采纳,获得10
31秒前
31秒前
打打应助科研通管家采纳,获得10
31秒前
Hayat应助科研通管家采纳,获得10
31秒前
31秒前
Ava应助科研通管家采纳,获得10
31秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976583
求助须知:如何正确求助?哪些是违规求助? 3520659
关于积分的说明 11204399
捐赠科研通 3257298
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877842
科研通“疑难数据库(出版商)”最低求助积分说明 806595