AdaIN-Based Tunable CycleGAN for Efficient Unsupervised Low-Dose CT Denoising

计算机科学 规范化(社会学) 发电机(电路理论) 人工智能 深度学习 模式识别(心理学) 人工神经网络 还原(数学) 一致性(知识库) 降噪 噪音(视频) 编码(集合论) 图像(数学) 图像去噪 功率(物理) 数学 社会学 物理 集合(抽象数据类型) 程序设计语言 量子力学 人类学 几何学
作者
Jawook Gu,Jong Chul Ye
出处
期刊:IEEE transactions on computational imaging 卷期号:7: 73-85 被引量:83
标识
DOI:10.1109/tci.2021.3050266
摘要

Recently, deep learning approaches using CycleGAN have been demonstrated as a powerful unsupervised learning scheme for low-dose CT denoising. Unfortunately, one of the main limitations of the CycleGAN approach is that it requires two deep neural network generators at the training phase, although only one of them is used at the inference phase. The secondary auxiliary generator is needed to enforce the cycle-consistency, but the additional memory requirements and the increase in the number of learnable parameters are major hurdles for successful CycleGAN training. Despite the use of additional generator, CycleGAN only translates between two domains, so it is not possible to investigate the intermediate level of denoising. To address this issue, here we propose a novel tunable CycleGAN architecture using a single generator. In particular, a single generator is implemented using adaptive instance normalization (AdaIN) layers so that the baseline generator converting a low-dose CT image to a routine-dose CT image can be switched to a generator converting high-dose to low-dose by simply changing the AdaIN code. Thanks to the shared baseline network, the additional memory requirement and weight increases are minimized, and the training can be done more stably even with small training data. Furthermore, by interpolating the AdaIN codes between the two domains, we can investigate various intermediate level of denoising results. Experimental results show that the proposed method outperforms the previous CycleGAN approaches while using only about half the parameters, and provide tunable denoising features that may be potentially useful in clinical environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
嘿嘿嘿发布了新的文献求助10
刚刚
刚刚
1秒前
小肥鑫发布了新的文献求助10
2秒前
3秒前
scoot完成签到 ,获得积分10
3秒前
wjx关闭了wjx文献求助
3秒前
3秒前
蛋挞完成签到,获得积分20
3秒前
hhh完成签到 ,获得积分10
5秒前
爱学习发布了新的文献求助10
5秒前
张张发布了新的文献求助10
5秒前
wangsai0532完成签到,获得积分10
6秒前
6秒前
SciGPT应助1111111111111111采纳,获得10
6秒前
6秒前
Aaron完成签到 ,获得积分10
7秒前
xx完成签到,获得积分10
7秒前
嘿嘿嘿发布了新的文献求助10
7秒前
晗晗发布了新的文献求助10
8秒前
8秒前
研友_VZG7GZ应助小肥鑫采纳,获得10
8秒前
万能图书馆应助Joey采纳,获得10
10秒前
10秒前
11秒前
香蕉觅云应助EmmaLin采纳,获得10
11秒前
11秒前
77发布了新的文献求助10
12秒前
13秒前
FashionBoy应助泠漓采纳,获得10
13秒前
13秒前
13秒前
于大强完成签到,获得积分10
14秒前
共享精神应助晗晗采纳,获得10
15秒前
终抵星空发布了新的文献求助10
15秒前
轻松的妍发布了新的文献求助10
15秒前
深情安青应助嘿嘿嘿采纳,获得10
15秒前
搜集达人应助lvlv采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676