AdaIN-Based Tunable CycleGAN for Efficient Unsupervised Low-Dose CT Denoising

计算机科学 规范化(社会学) 发电机(电路理论) 人工智能 深度学习 模式识别(心理学) 人工神经网络 还原(数学) 一致性(知识库) 降噪 噪音(视频) 编码(集合论) 图像(数学) 图像去噪 功率(物理) 数学 物理 几何学 集合(抽象数据类型) 量子力学 社会学 人类学 程序设计语言
作者
Jawook Gu,Jong Chul Ye
出处
期刊:IEEE transactions on computational imaging 卷期号:7: 73-85 被引量:83
标识
DOI:10.1109/tci.2021.3050266
摘要

Recently, deep learning approaches using CycleGAN have been demonstrated as a powerful unsupervised learning scheme for low-dose CT denoising. Unfortunately, one of the main limitations of the CycleGAN approach is that it requires two deep neural network generators at the training phase, although only one of them is used at the inference phase. The secondary auxiliary generator is needed to enforce the cycle-consistency, but the additional memory requirements and the increase in the number of learnable parameters are major hurdles for successful CycleGAN training. Despite the use of additional generator, CycleGAN only translates between two domains, so it is not possible to investigate the intermediate level of denoising. To address this issue, here we propose a novel tunable CycleGAN architecture using a single generator. In particular, a single generator is implemented using adaptive instance normalization (AdaIN) layers so that the baseline generator converting a low-dose CT image to a routine-dose CT image can be switched to a generator converting high-dose to low-dose by simply changing the AdaIN code. Thanks to the shared baseline network, the additional memory requirement and weight increases are minimized, and the training can be done more stably even with small training data. Furthermore, by interpolating the AdaIN codes between the two domains, we can investigate various intermediate level of denoising results. Experimental results show that the proposed method outperforms the previous CycleGAN approaches while using only about half the parameters, and provide tunable denoising features that may be potentially useful in clinical environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凉的白开完成签到,获得积分10
1秒前
zbh完成签到,获得积分10
3秒前
神揽星辰入梦完成签到,获得积分10
3秒前
七月完成签到,获得积分10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
陌疑应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
同學你該吃藥了完成签到 ,获得积分10
7秒前
9秒前
俏皮的飞柏完成签到,获得积分10
10秒前
斯文败类应助研路漫漫采纳,获得10
10秒前
lp发布了新的文献求助20
11秒前
huyz发布了新的文献求助10
12秒前
慈祥的花瓣完成签到,获得积分10
13秒前
14秒前
完美世界应助一直采纳,获得10
15秒前
菜鸟12发布了新的文献求助10
16秒前
16秒前
18秒前
zzz发布了新的文献求助10
20秒前
22秒前
二三发布了新的文献求助10
23秒前
cjyyy发布了新的文献求助10
24秒前
29秒前
future完成签到 ,获得积分10
29秒前
TTT0530完成签到,获得积分10
30秒前
goufufu完成签到,获得积分10
30秒前
zs1234完成签到,获得积分10
31秒前
八度浮完成签到,获得积分10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343