Cross-Modality Multi-Atlas Segmentation via Deep Registration and Label Fusion

人工智能 计算机科学 分割 图像配准 模态(人机交互) 计算机视觉 图像融合 模式识别(心理学) 图像分割 医学影像学 地图集(解剖学) 融合 深度学习 图像(数学) 医学 解剖 哲学 语言学
作者
Wangbin Ding,Lei Li,Xiahai Zhuang,Liqin Huang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (7): 3104-3115 被引量:2
标识
DOI:10.1109/jbhi.2022.3149114
摘要

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target image; and the transformed atlas labels can be combined to generate target segmentation via label fusion schemes. Many conventional MAS methods employed the atlases from the same modality as the target image. However, the number of atlases with the same modality may be limited or even missing in many clinical applications. Besides, conventional MAS methods suffer from the computational burden of registration or label fusion procedures. In this work, we design a novel cross-modality MAS framework, which uses available atlases from a certain modality to segment a target image from another modality. To boost the computational efficiency of the framework, both the image registration and label fusion are achieved by well-designed deep neural networks. For the atlas-to-target image registration, we propose a bi-directional registration network (BiRegNet), which can efficiently align images from different modalities. For the label fusion, we design a similarity estimation network (SimNet), which estimates the fusion weight of each atlas by measuring its similarity to the target image. SimNet can learn multi-scale information for similarity estimation to improve the performance of label fusion. The proposed framework was evaluated by the left ventricle and liver segmentation tasks on the MM-WHS and CHAOS datasets, respectively. Results have shown that the framework is effective for cross-modality MAS in both registration and label fusion https://github.com/NanYoMy/cmmas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助DDKK采纳,获得10
刚刚
AronHUANG发布了新的文献求助10
1秒前
1秒前
科研通AI2S应助拼搏迎梦采纳,获得20
1秒前
爆米花应助缥缈的闭月采纳,获得30
1秒前
南极野人完成签到,获得积分10
2秒前
活泼一凤发布了新的文献求助10
2秒前
苹果沛柔完成签到,获得积分10
2秒前
3秒前
所所应助鱼2333采纳,获得10
3秒前
小鱼发布了新的文献求助10
4秒前
山大王yoyo完成签到,获得积分10
4秒前
Ava应助wucl1990采纳,获得10
4秒前
4秒前
Sunrise完成签到,获得积分10
5秒前
苹果沛柔发布了新的文献求助10
5秒前
清爽的水蓝完成签到,获得积分10
5秒前
落叶完成签到,获得积分10
6秒前
LLL20240701发布了新的文献求助30
6秒前
wanci应助ciooli采纳,获得10
7秒前
小二郎应助义气的海瑶采纳,获得10
7秒前
丘比特应助如意书包采纳,获得10
7秒前
Ridley发布了新的文献求助10
7秒前
8秒前
隐形曼青应助lw采纳,获得10
8秒前
Lucas应助Serenity采纳,获得10
9秒前
无敌小帅发布了新的文献求助30
9秒前
香蕉觅云应助lvsehx采纳,获得10
9秒前
对苏完成签到,获得积分10
11秒前
11秒前
march应助Yellue采纳,获得20
11秒前
12秒前
心灵美复天完成签到,获得积分10
12秒前
Tan3837完成签到,获得积分10
13秒前
冷酷仙境的羊男完成签到 ,获得积分10
13秒前
13秒前
活泼一凤完成签到,获得积分10
13秒前
13秒前
14秒前
如初发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620