已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction and Analysis of Strawberry Moisture Content based on BP Neural Network Model

含水量 人工神经网络 主成分分析 相关系数 水分 预测建模 高光谱成像 计算机科学 环境科学 生物系统 数学 人工智能 机器学习 工程类 气象学 地理 生物 岩土工程
作者
Wei Jiang,Hongmei Xu,Elnaz Akbari,Wen Jiang,S. Liu,Chenglong Wang,Jiajun Dong
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:13 (4): 657-671 被引量:1
标识
DOI:10.2174/2213275912666190429161911
摘要

Background: Moisture content is one of the most important indicators for the quality of fresh strawberries. Currently, several methods are usually employed to detect the moisture content in strawberry. However, these methods are relatively simple and can only be used to detect the moisture content of single samples but not batches of samples. Besides, the integrity of the samples may be destroyed. Therefore, it is important to develop a simple and efficient prediction method for strawberry moisture to facilitate the market circulation of strawberry. Objective: This study aims to establish a novel BP neural network prediction model to predict and analyze strawberry moisture. Methods: Toyonoka and Jingyao strawberries were taken as the research objects. The hyperspectral technology, spectral difference analysis, correlation coefficient method, principal component analysis and artificial neural network technology were combined to predict the moisture content of strawberry. Results: The characteristic wavelengths were highly correlated with the strawberry moisture content. The stability and prediction effect of the BP neural network prediction model based on characteristic wavelengths are superior to those of the prediction model based on principal components, and the correlation coefficients of the calibration set for Toyonaka and Jingyao respectively reached up to 0.9532 and 0.9846 with low levels of standard deviations (0.3204 and 0.3010, respectively). Conclusion: The BP neural network prediction model of strawberry moisture has certain practicability and can provide some reference for the on-line and non-destructive detection of fruits and vegetables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助迷途采纳,获得10
1秒前
and999发布了新的文献求助10
1秒前
li发布了新的文献求助10
2秒前
北极熊完成签到,获得积分10
2秒前
浅尝离白应助白苏采纳,获得30
2秒前
yu发布了新的文献求助10
3秒前
我是老大应助山上的树采纳,获得10
5秒前
研友_8Kedgn发布了新的文献求助10
6秒前
zhouleiwang应助董竹君采纳,获得10
6秒前
7秒前
9秒前
Hello应助章鱼采纳,获得10
9秒前
10秒前
喜悦的琳发布了新的文献求助10
11秒前
星辰大海应助Tasker-X采纳,获得10
12秒前
科研通AI2S应助6666采纳,获得10
13秒前
13秒前
15秒前
小蘑菇应助djbj2022采纳,获得10
16秒前
17秒前
Aria_chao发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
20秒前
上官若男应助Dr.Liujun采纳,获得10
22秒前
24秒前
董竹君发布了新的文献求助10
24秒前
林齐发布了新的文献求助10
25秒前
丘比特应助端庄之云采纳,获得10
26秒前
27秒前
27秒前
28秒前
Aria_chao发布了新的文献求助10
29秒前
Orange应助优美的背包采纳,获得10
30秒前
djbj2022发布了新的文献求助10
31秒前
liujie发布了新的文献求助10
32秒前
迷途发布了新的文献求助10
32秒前
33秒前
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146409
求助须知:如何正确求助?哪些是违规求助? 2797811
关于积分的说明 7825638
捐赠科研通 2454147
什么是DOI,文献DOI怎么找? 1306157
科研通“疑难数据库(出版商)”最低求助积分说明 627642
版权声明 601503