Prediction and Analysis of Strawberry Moisture Content based on BP Neural Network Model

含水量 人工神经网络 主成分分析 相关系数 水分 预测建模 高光谱成像 计算机科学 环境科学 生物系统 数学 人工智能 机器学习 工程类 气象学 地理 生物 岩土工程
作者
Wei Jiang,Hongmei Xu,Elnaz Akbari,Wen Jiang,Shuang Liu,Chenglong Wang,Jiajun Dong
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:13 (4): 657-671 被引量:1
标识
DOI:10.2174/2213275912666190429161911
摘要

Background: Moisture content is one of the most important indicators for the quality of fresh strawberries. Currently, several methods are usually employed to detect the moisture content in strawberry. However, these methods are relatively simple and can only be used to detect the moisture content of single samples but not batches of samples. Besides, the integrity of the samples may be destroyed. Therefore, it is important to develop a simple and efficient prediction method for strawberry moisture to facilitate the market circulation of strawberry. Objective: This study aims to establish a novel BP neural network prediction model to predict and analyze strawberry moisture. Methods: Toyonoka and Jingyao strawberries were taken as the research objects. The hyperspectral technology, spectral difference analysis, correlation coefficient method, principal component analysis and artificial neural network technology were combined to predict the moisture content of strawberry. Results: The characteristic wavelengths were highly correlated with the strawberry moisture content. The stability and prediction effect of the BP neural network prediction model based on characteristic wavelengths are superior to those of the prediction model based on principal components, and the correlation coefficients of the calibration set for Toyonaka and Jingyao respectively reached up to 0.9532 and 0.9846 with low levels of standard deviations (0.3204 and 0.3010, respectively). Conclusion: The BP neural network prediction model of strawberry moisture has certain practicability and can provide some reference for the on-line and non-destructive detection of fruits and vegetables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YUYUYU完成签到 ,获得积分10
刚刚
桐桐应助hugdoggy采纳,获得10
1秒前
汉堡包应助无限的隶采纳,获得10
1秒前
1秒前
zhy117820完成签到,获得积分10
3秒前
composite66完成签到,获得积分10
3秒前
4秒前
4秒前
changfox完成签到,获得积分10
4秒前
4秒前
syr1462发布了新的文献求助10
5秒前
在水一方应助ttang采纳,获得200
6秒前
yydragen应助ZhouYW采纳,获得30
7秒前
Lee发布了新的文献求助10
7秒前
CodeCraft应助mystryjoker采纳,获得30
7秒前
rocket完成签到,获得积分10
8秒前
yysghr发布了新的文献求助10
8秒前
顾矜应助huhuhu采纳,获得10
8秒前
Loik发布了新的文献求助10
8秒前
yizhi猫发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
11秒前
12秒前
12秒前
华仔应助卢莹采纳,获得10
12秒前
一口蛋黄苏完成签到,获得积分10
14秒前
14秒前
SMLW发布了新的文献求助10
14秒前
14秒前
hugdoggy发布了新的文献求助10
14秒前
豆豆完成签到 ,获得积分10
15秒前
laallaall应助Loik采纳,获得10
15秒前
吨吨发布了新的文献求助10
16秒前
16秒前
17秒前
研友_n0kYwL完成签到,获得积分10
17秒前
电闪发布了新的文献求助10
18秒前
ELITOmiko发布了新的文献求助10
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961103
求助须知:如何正确求助?哪些是违规求助? 3507388
关于积分的说明 11135834
捐赠科研通 3239867
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803152