稳健性(进化)
计算机科学
会话(web分析)
人工智能
钥匙(锁)
扭矩
深度学习
人机交互
机器学习
生物化学
化学
物理
计算机安全
万维网
基因
热力学
作者
Dezhen Xiong,Daohui Zhang,Xingang Zhao,Yiwen Zhao
出处
期刊:IEEE/CAA Journal of Automatica Sinica
[Institute of Electrical and Electronics Engineers]
日期:2021-02-03
卷期号:8 (3): 512-533
被引量:226
标识
DOI:10.1109/jas.2021.1003865
摘要
Electromyography (EMG) has already been broadly used in human-machine interaction (HMI) applications. Determining how to decode the information inside EMG signals robustly and accurately is a key problem for which we urgently need a solution. Recently, many EMG pattern recognition tasks have been addressed using deep learning methods. In this paper, we analyze recent papers and present a literature review describing the role that deep learning plays in EMG-based HMI. An overview of typical network structures and processing schemes will be provided. Recent progress in typical tasks such as movement classification, joint angle prediction, and force/torque estimation will be introduced. New issues, including multimodal sensing, inter-subject/inter-session, and robustness toward disturbances will be discussed. We attempt to provide a comprehensive analysis of current research by discussing the advantages, challenges, and opportunities brought by deep learning. We hope that deep learning can aid in eliminating factors that hinder the development of EMG-based HMI systems. Furthermore, possible future directions will be presented to pave the way for future research.
科研通智能强力驱动
Strongly Powered by AbleSci AI