Defect Induced Polarization Loss in Multi‐Shelled Spinel Hollow Spheres for Electromagnetic Wave Absorption Application

球体 尖晶石 材料科学 电磁辐射 极化(电化学) 吸收(声学) 光学 复合材料 化学 冶金 天文 物理 物理化学
作者
Ming Qin,Limin Zhang,Xiaoru Zhao,Hongjing Wu
出处
期刊:Advanced Science [Wiley]
卷期号:8 (8): 2004640-2004640 被引量:332
标识
DOI:10.1002/advs.202004640
摘要

Abstract Defect engineering is an effective approach to manipulate electromagnetic (EM) parameters and enhance absorption ability, but defect induced dielectric loss dominant mechanism has not been completely clarified. Here the defect induced dielectric loss dominant mechanism in virtue of multi‐shelled spinel hollow sphere for the first time is demonstrated. The unique but identical morphology design as well as suitable composition modulation for serial spinels can exclude the disturbance of EM wave dissipation from dipolar/interfacial polarization and conduction loss. In temperature‐regulated defect in NiCo 2 O 4 serial materials, two kinds of defects, defect in spinel structure and oxygen vacancy are detected. Defect in spinel structure played more profound role on determining materials’ EM wave dissipation than that of oxygen vacancy. When evaluated serial Co‐based materials as absorbers, defect induced polarization loss is responsible for the superior absorption performance of NiCo 2 O 4 ‐based material due to its more defect sites in spinel structure. It is discovered that electron spin resonance test may be adopted as a novel approach to directly probe EM wave absorption capacities of materials. This work not only provides a strategy to prepare lightweight, efficient EM wave absorber but also illustrates the importance of defect engineering on regulation of materials’ dielectric loss capacity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助博士采纳,获得10
1秒前
Zx_1993应助ADAN采纳,获得20
2秒前
3秒前
3秒前
归尘应助冷静曼岚采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
珍奇完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
我是老大应助冷酷的小凝采纳,获得10
6秒前
Lucas应助动人的寻雪采纳,获得10
7秒前
wei官人完成签到,获得积分10
7秒前
孙志彪发布了新的文献求助10
8秒前
8秒前
9秒前
落晖完成签到 ,获得积分10
9秒前
bmhs2017应助ycc采纳,获得50
9秒前
萍萍完成签到,获得积分10
9秒前
快乐的鱼发布了新的文献求助10
10秒前
13秒前
Sugarhm完成签到,获得积分10
13秒前
博士发布了新的文献求助10
13秒前
萍萍发布了新的文献求助10
14秒前
啄木鸟完成签到 ,获得积分10
15秒前
zhihua完成签到,获得积分10
16秒前
18秒前
20秒前
传奇3应助顺心纸鹤采纳,获得10
21秒前
Hongmin完成签到,获得积分10
23秒前
NXK发布了新的文献求助10
24秒前
25秒前
25秒前
Hongmin发布了新的文献求助10
27秒前
俞雨鱼发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416931
求助须知:如何正确求助?哪些是违规求助? 4532992
关于积分的说明 14137696
捐赠科研通 4449052
什么是DOI,文献DOI怎么找? 2440569
邀请新用户注册赠送积分活动 1432413
关于科研通互助平台的介绍 1409818