Defect Induced Polarization Loss in Multi‐Shelled Spinel Hollow Spheres for Electromagnetic Wave Absorption Application

球体 尖晶石 材料科学 电磁辐射 极化(电化学) 吸收(声学) 光学 复合材料 化学 冶金 天文 物理 物理化学
作者
Ming Qin,Limin Zhang,Xiaoru Zhao,Hongjing Wu
出处
期刊:Advanced Science [Wiley]
卷期号:8 (8) 被引量:290
标识
DOI:10.1002/advs.202004640
摘要

Abstract Defect engineering is an effective approach to manipulate electromagnetic (EM) parameters and enhance absorption ability, but defect induced dielectric loss dominant mechanism has not been completely clarified. Here the defect induced dielectric loss dominant mechanism in virtue of multi‐shelled spinel hollow sphere for the first time is demonstrated. The unique but identical morphology design as well as suitable composition modulation for serial spinels can exclude the disturbance of EM wave dissipation from dipolar/interfacial polarization and conduction loss. In temperature‐regulated defect in NiCo 2 O 4 serial materials, two kinds of defects, defect in spinel structure and oxygen vacancy are detected. Defect in spinel structure played more profound role on determining materials’ EM wave dissipation than that of oxygen vacancy. When evaluated serial Co‐based materials as absorbers, defect induced polarization loss is responsible for the superior absorption performance of NiCo 2 O 4 ‐based material due to its more defect sites in spinel structure. It is discovered that electron spin resonance test may be adopted as a novel approach to directly probe EM wave absorption capacities of materials. This work not only provides a strategy to prepare lightweight, efficient EM wave absorber but also illustrates the importance of defect engineering on regulation of materials’ dielectric loss capacity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
谦让雨柏发布了新的文献求助30
1秒前
2秒前
2秒前
小殷发布了新的文献求助10
3秒前
3秒前
4秒前
派大星发布了新的文献求助10
4秒前
5秒前
傻什么白完成签到,获得积分10
6秒前
田様应助小殷采纳,获得10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
YXM1发布了新的文献求助10
8秒前
8秒前
kai发布了新的文献求助10
8秒前
9秒前
善良访烟发布了新的文献求助30
9秒前
9秒前
橙子发布了新的文献求助10
10秒前
清爽的元灵完成签到,获得积分10
11秒前
11秒前
遇见发布了新的文献求助10
11秒前
研友_enP05n发布了新的文献求助10
12秒前
隐形曼青应助忧心的康采纳,获得30
13秒前
善学以致用应助木木木采纳,获得10
16秒前
feedyoursoul发布了新的文献求助10
16秒前
遇见完成签到,获得积分10
17秒前
科研通AI2S应助chen采纳,获得10
17秒前
叶子完成签到,获得积分10
17秒前
橙子完成签到,获得积分10
17秒前
香蕉觅云应助傻什么白采纳,获得30
18秒前
Small_L完成签到 ,获得积分10
19秒前
Hans完成签到,获得积分10
20秒前
21秒前
kai完成签到,获得积分10
21秒前
22秒前
XiaoYuuu完成签到,获得积分10
22秒前
qphys完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950591
求助须知:如何正确求助?哪些是违规求助? 4213415
关于积分的说明 13103805
捐赠科研通 3995216
什么是DOI,文献DOI怎么找? 2186825
邀请新用户注册赠送积分活动 1202071
关于科研通互助平台的介绍 1115355