Defect Induced Polarization Loss in Multi‐Shelled Spinel Hollow Spheres for Electromagnetic Wave Absorption Application

球体 尖晶石 材料科学 电磁辐射 极化(电化学) 吸收(声学) 光学 复合材料 化学 冶金 天文 物理 物理化学
作者
Ming Qin,Limin Zhang,Xiaoru Zhao,Hongjing Wu
出处
期刊:Advanced Science [Wiley]
卷期号:8 (8): 2004640-2004640 被引量:332
标识
DOI:10.1002/advs.202004640
摘要

Abstract Defect engineering is an effective approach to manipulate electromagnetic (EM) parameters and enhance absorption ability, but defect induced dielectric loss dominant mechanism has not been completely clarified. Here the defect induced dielectric loss dominant mechanism in virtue of multi‐shelled spinel hollow sphere for the first time is demonstrated. The unique but identical morphology design as well as suitable composition modulation for serial spinels can exclude the disturbance of EM wave dissipation from dipolar/interfacial polarization and conduction loss. In temperature‐regulated defect in NiCo 2 O 4 serial materials, two kinds of defects, defect in spinel structure and oxygen vacancy are detected. Defect in spinel structure played more profound role on determining materials’ EM wave dissipation than that of oxygen vacancy. When evaluated serial Co‐based materials as absorbers, defect induced polarization loss is responsible for the superior absorption performance of NiCo 2 O 4 ‐based material due to its more defect sites in spinel structure. It is discovered that electron spin resonance test may be adopted as a novel approach to directly probe EM wave absorption capacities of materials. This work not only provides a strategy to prepare lightweight, efficient EM wave absorber but also illustrates the importance of defect engineering on regulation of materials’ dielectric loss capacity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
怕黑雨竹完成签到,获得积分10
1秒前
年年完成签到,获得积分10
1秒前
lxz关注了科研通微信公众号
1秒前
2秒前
JMrider完成签到,获得积分10
2秒前
忐忑的妙柏完成签到,获得积分10
3秒前
YY发布了新的文献求助10
3秒前
给我好好读书完成签到,获得积分10
3秒前
欣喜若灵发布了新的文献求助10
3秒前
Lucas应助过气的蓝精灵采纳,获得10
3秒前
张玮发布了新的文献求助30
4秒前
4秒前
yaya应助zoey采纳,获得20
4秒前
隐形曼青应助伶俐骁采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
福祸相依发布了新的文献求助10
5秒前
潇洒依白发布了新的文献求助10
6秒前
墨西哥猪肉卷完成签到,获得积分10
6秒前
易研学术完成签到,获得积分10
6秒前
旺旺大礼包完成签到,获得积分10
7秒前
wyg512发布了新的文献求助10
7秒前
7秒前
7秒前
cwy完成签到,获得积分10
7秒前
科研通AI6应助傲娇的汉堡采纳,获得30
7秒前
7秒前
面包小狗完成签到,获得积分10
8秒前
微风发布了新的文献求助10
8秒前
8秒前
想个名字完成签到,获得积分10
9秒前
小树发布了新的文献求助30
9秒前
bioglia完成签到,获得积分10
9秒前
catherine完成签到,获得积分10
9秒前
赘婿应助YY采纳,获得10
9秒前
五虎完成签到,获得积分10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524025
求助须知:如何正确求助?哪些是违规求助? 4614655
关于积分的说明 14543905
捐赠科研通 4552420
什么是DOI,文献DOI怎么找? 2494845
邀请新用户注册赠送积分活动 1475559
关于科研通互助平台的介绍 1447219