Neural RRT*: Learning-Based Optimal Path Planning

路径(计算) 运动规划 计算机科学 趋同(经济学) 卷积神经网络 人工智能 公制(单位) 任意角度路径规划 树(集合论) 随机树 数学优化 机器人 工程类 数学 经济 数学分析 程序设计语言 运营管理 经济增长
作者
Jiankun Wang,Wenzheng Chi,Chenming Li,Chaoqun Wang,Max Q.‐H. Meng
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:17 (4): 1748-1758 被引量:336
标识
DOI:10.1109/tase.2020.2976560
摘要

Rapidly random-exploring tree (RRT) and its variants are very popular due to their ability to quickly and efficiently explore the state space. However, they suffer sensitivity to the initial solution and slow convergence to the optimal solution, which means that they consume a lot of memory and time to find the optimal path. It is critical to quickly find a short path in many applications such as the autonomous vehicle with limited power/fuel. To overcome these limitations, we propose a novel optimal path planning algorithm based on the convolutional neural network (CNN), namely the neural RRT* (NRRT*). The NRRT* utilizes a nonuniform sampling distribution generated from a CNN model. The model is trained using quantities of successful path planning cases. In this article, we use the A* algorithm to generate the training data set consisting of the map information and the optimal path. For a given task, the proposed CNN model can predict the probability distribution of the optimal path on the map, which is used to guide the sampling process. The time cost and memory usage of the planned path are selected as the metric to demonstrate the effectiveness and efficiency of the NRRT*. The simulation results reveal that the NRRT* can achieve convincing performance compared with the state-of-the-art path planning algorithms. Note to Practitioners-The motivation of this article stems from the need to develop a fast and efficient path planning algorithm for practical applications such as autonomous driving, warehouse robot, and countless others. Sampling-based algorithms are widely used in these areas due to their good scalability and high efficiency. However, the quality of the initial path is not guaranteed and it takes much time to converge to the optimal path. To quickly obtain a high-quality initial path and accelerate the convergence speed, we propose the NRRT*. It utilizes a nonuniform sampling distribution and achieves better performance. The NRRT* can be also applied to other sampling-based algorithms for improved results in different applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
mi发布了新的文献求助10
刚刚
1秒前
顺利毕业完成签到 ,获得积分10
1秒前
GGZ发布了新的文献求助10
2秒前
笑笑发布了新的文献求助10
2秒前
轻松致远完成签到 ,获得积分10
2秒前
2秒前
现实的曼荷给现实的曼荷的求助进行了留言
2秒前
沈随便完成签到,获得积分10
3秒前
3秒前
3秒前
风中的海雪完成签到,获得积分10
4秒前
CucRuotThua完成签到,获得积分10
4秒前
QQ完成签到,获得积分10
4秒前
这个论文非写不可完成签到,获得积分10
4秒前
5秒前
ZZZpp发布了新的文献求助10
5秒前
5秒前
易伊澤发布了新的文献求助10
5秒前
饱满小兔子完成签到,获得积分10
6秒前
6秒前
共享精神应助phz采纳,获得10
7秒前
喵了个咪完成签到 ,获得积分10
7秒前
科研通AI5应助俭朴夜雪采纳,获得10
7秒前
7秒前
頑皮燕姿完成签到,获得积分10
7秒前
7秒前
丁德乐可发布了新的文献求助10
8秒前
Minkslion完成签到,获得积分10
8秒前
於松完成签到,获得积分10
8秒前
8秒前
yyyy发布了新的文献求助10
9秒前
稳重无剑完成签到,获得积分10
10秒前
wuha完成签到,获得积分10
10秒前
10秒前
欢喜从霜完成签到,获得积分10
11秒前
Orange应助LiShin采纳,获得10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762