Neural RRT*: Learning-Based Optimal Path Planning

路径(计算) 运动规划 计算机科学 趋同(经济学) 卷积神经网络 人工智能 公制(单位) 任意角度路径规划 树(集合论) 随机树 数学优化 机器人 工程类 数学 经济 数学分析 程序设计语言 运营管理 经济增长
作者
Jiankun Wang,Wenzheng Chi,Chenming Li,Chaoqun Wang,Max Q.‐H. Meng
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:17 (4): 1748-1758 被引量:291
标识
DOI:10.1109/tase.2020.2976560
摘要

Rapidly random-exploring tree (RRT) and its variants are very popular due to their ability to quickly and efficiently explore the state space. However, they suffer sensitivity to the initial solution and slow convergence to the optimal solution, which means that they consume a lot of memory and time to find the optimal path. It is critical to quickly find a short path in many applications such as the autonomous vehicle with limited power/fuel. To overcome these limitations, we propose a novel optimal path planning algorithm based on the convolutional neural network (CNN), namely the neural RRT* (NRRT*). The NRRT* utilizes a nonuniform sampling distribution generated from a CNN model. The model is trained using quantities of successful path planning cases. In this article, we use the A* algorithm to generate the training data set consisting of the map information and the optimal path. For a given task, the proposed CNN model can predict the probability distribution of the optimal path on the map, which is used to guide the sampling process. The time cost and memory usage of the planned path are selected as the metric to demonstrate the effectiveness and efficiency of the NRRT*. The simulation results reveal that the NRRT* can achieve convincing performance compared with the state-of-the-art path planning algorithms. Note to Practitioners-The motivation of this article stems from the need to develop a fast and efficient path planning algorithm for practical applications such as autonomous driving, warehouse robot, and countless others. Sampling-based algorithms are widely used in these areas due to their good scalability and high efficiency. However, the quality of the initial path is not guaranteed and it takes much time to converge to the optimal path. To quickly obtain a high-quality initial path and accelerate the convergence speed, we propose the NRRT*. It utilizes a nonuniform sampling distribution and achieves better performance. The NRRT* can be also applied to other sampling-based algorithms for improved results in different applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮不可发布了新的文献求助10
刚刚
刚刚
稳重面包完成签到,获得积分10
1秒前
KK完成签到,获得积分10
1秒前
丘比特应助ryt采纳,获得10
2秒前
苹果巧蕊完成签到 ,获得积分10
2秒前
3秒前
慧敏发布了新的文献求助10
4秒前
Annie发布了新的文献求助10
4秒前
踏雪完成签到,获得积分10
5秒前
俏皮不可完成签到,获得积分10
6秒前
动人的诗霜完成签到 ,获得积分10
6秒前
神凰完成签到,获得积分10
6秒前
fai完成签到,获得积分10
7秒前
8秒前
10秒前
称心的笑阳完成签到,获得积分10
11秒前
11秒前
阿凯完成签到 ,获得积分10
12秒前
12秒前
yangll发布了新的文献求助10
13秒前
iNk应助zorro3574采纳,获得10
14秒前
lucky他爹完成签到,获得积分10
15秒前
沉默哈密瓜完成签到 ,获得积分10
15秒前
16秒前
华仔应助野性的凌瑶采纳,获得10
16秒前
丘比特应助Philip采纳,获得10
17秒前
yjc发布了新的文献求助10
18秒前
老单完成签到 ,获得积分10
20秒前
20秒前
滴滴哒哒完成签到 ,获得积分10
20秒前
丰盛的煎饼应助西伯侯采纳,获得10
20秒前
22秒前
Ava应助乐乐乐乐乐乐采纳,获得10
24秒前
24秒前
24秒前
小马甲应助乐乐乐乐乐乐采纳,获得10
24秒前
可爱的函函应助25采纳,获得10
24秒前
赘婿应助四小时充足睡眠采纳,获得10
25秒前
KimTran完成签到,获得积分10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151772
求助须知:如何正确求助?哪些是违规求助? 2803175
关于积分的说明 7852148
捐赠科研通 2460566
什么是DOI,文献DOI怎么找? 1309864
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760