Neural RRT*: Learning-Based Optimal Path Planning

路径(计算) 运动规划 计算机科学 趋同(经济学) 卷积神经网络 人工智能 公制(单位) 任意角度路径规划 树(集合论) 随机树 数学优化 机器人 工程类 数学 经济 数学分析 程序设计语言 运营管理 经济增长
作者
Jiankun Wang,Wenzheng Chi,Chenming Li,Chaoqun Wang,Max Q.‐H. Meng
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:17 (4): 1748-1758 被引量:357
标识
DOI:10.1109/tase.2020.2976560
摘要

Rapidly random-exploring tree (RRT) and its variants are very popular due to their ability to quickly and efficiently explore the state space. However, they suffer sensitivity to the initial solution and slow convergence to the optimal solution, which means that they consume a lot of memory and time to find the optimal path. It is critical to quickly find a short path in many applications such as the autonomous vehicle with limited power/fuel. To overcome these limitations, we propose a novel optimal path planning algorithm based on the convolutional neural network (CNN), namely the neural RRT* (NRRT*). The NRRT* utilizes a nonuniform sampling distribution generated from a CNN model. The model is trained using quantities of successful path planning cases. In this article, we use the A* algorithm to generate the training data set consisting of the map information and the optimal path. For a given task, the proposed CNN model can predict the probability distribution of the optimal path on the map, which is used to guide the sampling process. The time cost and memory usage of the planned path are selected as the metric to demonstrate the effectiveness and efficiency of the NRRT*. The simulation results reveal that the NRRT* can achieve convincing performance compared with the state-of-the-art path planning algorithms. Note to Practitioners-The motivation of this article stems from the need to develop a fast and efficient path planning algorithm for practical applications such as autonomous driving, warehouse robot, and countless others. Sampling-based algorithms are widely used in these areas due to their good scalability and high efficiency. However, the quality of the initial path is not guaranteed and it takes much time to converge to the optimal path. To quickly obtain a high-quality initial path and accelerate the convergence speed, we propose the NRRT*. It utilizes a nonuniform sampling distribution and achieves better performance. The NRRT* can be also applied to other sampling-based algorithms for improved results in different applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abcd_1067发布了新的文献求助10
1秒前
3秒前
3秒前
m鹿m嘟啦完成签到 ,获得积分10
3秒前
4秒前
李朝阳完成签到,获得积分10
5秒前
5秒前
爆米花应助tyy采纳,获得10
5秒前
5秒前
小张求论文完成签到,获得积分10
6秒前
6秒前
桐桐应助烩面大师采纳,获得10
6秒前
6秒前
挽风发布了新的文献求助10
7秒前
7秒前
proton完成签到,获得积分10
7秒前
7秒前
尔玉完成签到 ,获得积分10
8秒前
8秒前
韶邑发布了新的文献求助10
9秒前
9秒前
精明的书白完成签到,获得积分10
10秒前
10秒前
砂糖发布了新的文献求助10
10秒前
CYYDNDB发布了新的文献求助30
11秒前
刘巧明完成签到 ,获得积分10
11秒前
罗永昊发布了新的文献求助10
11秒前
等待小刺猬完成签到,获得积分10
12秒前
12秒前
生动梦桃发布了新的文献求助10
12秒前
13秒前
热心市民小红花应助niania采纳,获得10
13秒前
14秒前
慕青应助alice采纳,获得10
14秒前
joyce930728发布了新的文献求助10
14秒前
14秒前
lyn发布了新的文献求助200
14秒前
证基发布了新的文献求助10
14秒前
烩面大师发布了新的文献求助10
15秒前
沉默傲芙发布了新的文献求助10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978493
求助须知:如何正确求助?哪些是违规求助? 3522581
关于积分的说明 11213889
捐赠科研通 3260014
什么是DOI,文献DOI怎么找? 1799712
邀请新用户注册赠送积分活动 878604
科研通“疑难数据库(出版商)”最低求助积分说明 807002