Neural RRT*: Learning-Based Optimal Path Planning

路径(计算) 运动规划 计算机科学 趋同(经济学) 卷积神经网络 人工智能 公制(单位) 任意角度路径规划 树(集合论) 随机树 数学优化 机器人 工程类 数学 经济 数学分析 程序设计语言 运营管理 经济增长
作者
Jiankun Wang,Wenzheng Chi,Chenming Li,Chaoqun Wang,Max Q.‐H. Meng
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:17 (4): 1748-1758 被引量:380
标识
DOI:10.1109/tase.2020.2976560
摘要

Rapidly random-exploring tree (RRT) and its variants are very popular due to their ability to quickly and efficiently explore the state space. However, they suffer sensitivity to the initial solution and slow convergence to the optimal solution, which means that they consume a lot of memory and time to find the optimal path. It is critical to quickly find a short path in many applications such as the autonomous vehicle with limited power/fuel. To overcome these limitations, we propose a novel optimal path planning algorithm based on the convolutional neural network (CNN), namely the neural RRT* (NRRT*). The NRRT* utilizes a nonuniform sampling distribution generated from a CNN model. The model is trained using quantities of successful path planning cases. In this article, we use the A* algorithm to generate the training data set consisting of the map information and the optimal path. For a given task, the proposed CNN model can predict the probability distribution of the optimal path on the map, which is used to guide the sampling process. The time cost and memory usage of the planned path are selected as the metric to demonstrate the effectiveness and efficiency of the NRRT*. The simulation results reveal that the NRRT* can achieve convincing performance compared with the state-of-the-art path planning algorithms. Note to Practitioners-The motivation of this article stems from the need to develop a fast and efficient path planning algorithm for practical applications such as autonomous driving, warehouse robot, and countless others. Sampling-based algorithms are widely used in these areas due to their good scalability and high efficiency. However, the quality of the initial path is not guaranteed and it takes much time to converge to the optimal path. To quickly obtain a high-quality initial path and accelerate the convergence speed, we propose the NRRT*. It utilizes a nonuniform sampling distribution and achieves better performance. The NRRT* can be also applied to other sampling-based algorithms for improved results in different applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyx2010完成签到,获得积分10
1秒前
1秒前
斯文败类应助小小卖碳翁采纳,获得10
1秒前
erhao完成签到,获得积分10
1秒前
yijiali完成签到,获得积分10
2秒前
李健的粉丝团团长应助lq采纳,获得10
2秒前
2秒前
tx完成签到,获得积分10
2秒前
罗罗发布了新的文献求助10
2秒前
丘比特应助Zac采纳,获得10
2秒前
再一发布了新的文献求助10
2秒前
坐忘道发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
Yulin Yu完成签到,获得积分10
4秒前
SciGPT应助Lucille采纳,获得10
5秒前
lyh完成签到,获得积分10
5秒前
OYYO关注了科研通微信公众号
5秒前
hehsk发布了新的文献求助10
6秒前
方姿发布了新的文献求助10
6秒前
winner发布了新的文献求助10
6秒前
SOBER完成签到,获得积分20
7秒前
万能图书馆应助罗罗采纳,获得10
7秒前
7秒前
8秒前
苗苗发布了新的文献求助10
8秒前
8秒前
周凡淇发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
传奇3应助一丁点可爱采纳,获得10
10秒前
10秒前
神仙没有草原完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072617
求助须知:如何正确求助?哪些是违规求助? 4292947
关于积分的说明 13376665
捐赠科研通 4114155
什么是DOI,文献DOI怎么找? 2252906
邀请新用户注册赠送积分活动 1257594
关于科研通互助平台的介绍 1190476