Neural RRT*: Learning-Based Optimal Path Planning

路径(计算) 运动规划 计算机科学 趋同(经济学) 卷积神经网络 人工智能 公制(单位) 任意角度路径规划 树(集合论) 随机树 数学优化 机器人 工程类 数学 经济 数学分析 程序设计语言 运营管理 经济增长
作者
Jiankun Wang,Wenzheng Chi,Chenming Li,Chaoqun Wang,Max Q.‐H. Meng
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:17 (4): 1748-1758 被引量:380
标识
DOI:10.1109/tase.2020.2976560
摘要

Rapidly random-exploring tree (RRT) and its variants are very popular due to their ability to quickly and efficiently explore the state space. However, they suffer sensitivity to the initial solution and slow convergence to the optimal solution, which means that they consume a lot of memory and time to find the optimal path. It is critical to quickly find a short path in many applications such as the autonomous vehicle with limited power/fuel. To overcome these limitations, we propose a novel optimal path planning algorithm based on the convolutional neural network (CNN), namely the neural RRT* (NRRT*). The NRRT* utilizes a nonuniform sampling distribution generated from a CNN model. The model is trained using quantities of successful path planning cases. In this article, we use the A* algorithm to generate the training data set consisting of the map information and the optimal path. For a given task, the proposed CNN model can predict the probability distribution of the optimal path on the map, which is used to guide the sampling process. The time cost and memory usage of the planned path are selected as the metric to demonstrate the effectiveness and efficiency of the NRRT*. The simulation results reveal that the NRRT* can achieve convincing performance compared with the state-of-the-art path planning algorithms. Note to Practitioners-The motivation of this article stems from the need to develop a fast and efficient path planning algorithm for practical applications such as autonomous driving, warehouse robot, and countless others. Sampling-based algorithms are widely used in these areas due to their good scalability and high efficiency. However, the quality of the initial path is not guaranteed and it takes much time to converge to the optimal path. To quickly obtain a high-quality initial path and accelerate the convergence speed, we propose the NRRT*. It utilizes a nonuniform sampling distribution and achieves better performance. The NRRT* can be also applied to other sampling-based algorithms for improved results in different applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Freekor采纳,获得10
1秒前
丘比特应助squeak采纳,获得10
1秒前
1秒前
hkh发布了新的文献求助10
1秒前
赵荣完成签到,获得积分10
1秒前
1秒前
zy发布了新的文献求助10
2秒前
2秒前
know发布了新的文献求助10
2秒前
面面完成签到,获得积分10
3秒前
零零完成签到,获得积分10
3秒前
zyj关注了科研通微信公众号
3秒前
小兰花发布了新的文献求助10
3秒前
3秒前
zhangpeng完成签到,获得积分10
3秒前
德玛西亚完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
愉快寄翠发布了新的文献求助10
4秒前
4秒前
momo完成签到,获得积分10
4秒前
嫁接诺贝尔应助LTW采纳,获得10
4秒前
科目三应助yi采纳,获得10
4秒前
包容元芹发布了新的文献求助10
5秒前
最爱小胖宝的大胖宝完成签到,获得积分10
6秒前
Nikki发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
SciGPT应助面面采纳,获得10
7秒前
SIDEsss发布了新的文献求助10
7秒前
7秒前
牧童羽完成签到,获得积分10
8秒前
李爱国应助睦月采纳,获得10
9秒前
俊逸若之发布了新的文献求助10
9秒前
隐形曼青应助yy采纳,获得10
9秒前
汉堡包应助yayaya采纳,获得10
9秒前
9秒前
潇洒凡柔完成签到 ,获得积分10
9秒前
10秒前
魔音甜菜发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624261
求助须知:如何正确求助?哪些是违规求助? 4710125
关于积分的说明 14949526
捐赠科研通 4778199
什么是DOI,文献DOI怎么找? 2553176
邀请新用户注册赠送积分活动 1515094
关于科研通互助平台的介绍 1475490