交替链格孢
生物
分生孢子
蛋白酵素
微生物学
丝氨酸蛋白酶
枯草杆菌素
毒力
蛋白酶
菌丝
丝氨酸
生物化学
植物
基因
酶
作者
Huilan Fu,Kuang‐Ren Chung,Xiaohong Liu,Hongye Li
标识
DOI:10.1016/j.micres.2020.126537
摘要
Subtilisin-like serine protease secreted by pathogenic fungi can facilitate the infection and acquisition of nutrients. Functions of subtilisin-like serine proteases in the phytopathogenic fungus Alternaria alternata remains unknown. In the current study, 15 subtilisin-like serine proteases were individually deleted in the citrus fungal pathogen A. alternata. Only one, designated AaPrb1, was found to be required for A. alternata pathogenesis. The AaPrb1 deficiency strain (ΔAaprb1) reduced growth, conidiation, the formation of aerial hyphae, protease production, and virulence on citrus leaves. However, biochemical analyses and bioassays revealed that ΔAaprb1 plays no role in the production of ACT toxin. Through Y2H assays, Aaprb1 was found to interact with Aapep4, a vacuole-localized proteinase A in A. alternata. Furthermore, silencing AaPep4 in A. alternata resulted in phenotypes similar with those of ΔAaprb1. Expression of AaPrb1 was found to be regulated by AaPep4. TEM showed that AaPrb1and AaPep4 were involved in the suppression of the degradation of autophagosomes. Deletion of the autophagy gene AaAtg8 in A. alternata decreased conidiation, the formation of aerial hyphae and pathogenicity similar to ΔAaprb1, implying that some phenotypes of ΔAaprb1 were due to the impairment of autophagy. Overall, this study expands our understanding of how A. alternata utilizes the subtilisin-like serine protease to achieve successful infection in the plant host.
科研通智能强力驱动
Strongly Powered by AbleSci AI