材料科学
阴极
电池(电)
扩散
结构稳定性
离子
光电子学
纳米技术
物理化学
化学
热力学
结构工程
物理
工程类
功率(物理)
有机化学
量子力学
作者
Zeyi Wu,Chengjie Lu,Yanan Wang,Zhang Lin,Le Jiang,Wenchao Tian,Cailing Cai,Qinfen Gu,ZhengMing Sun,Linfeng Hu
出处
期刊:Small
[Wiley]
日期:2020-08-09
卷期号:16 (35)
被引量:193
标识
DOI:10.1002/smll.202000698
摘要
Abstract The realizing of high‐performance rechargeable aqueous zinc‐ion batteries (ZIBs) with high energy density and long cycling life is promising but still challenging due to the lack of suitable layered cathode materials. The work reports the excellent zinc‐ion storage performance as‐observed in few‐layered ultrathin VSe 2 nanosheets with a two‐step Zn 2+ intercalation/de‐intercalation mechanism verified by ex situ X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS) characterizations. The VSe 2 nanosheets exhibit a discharge plateau at 1.0–0.7 V, a specific capacity of 131.8 mAh g −1 (at 0.1 A g −1 ), and a high energy density of 107.3 Wh kg −1 (at a power density of 81.2 W kg −1 ). More importantly, outstanding cycle stability (capacity retention of 80.8% after 500 cycles) without any activation process is achieved. Such a prominent cyclic stability should be attributed to its fast Zn 2+ diffusion kinetics ( D Zn 2+ ≈ 10 −8 cm −2 s −1 ) and robust structural/crystalline stability. Density functional theory (DFT) calculation further reveals a strong metallic characteristic and optimal zinc‐ion diffusion pathway with a hopping energy barrier of 0.91 eV. The present finding implies that 2D ultrathin VSe 2 is a very promising cathode material in ZIBs with remarkable battery performance superior to other layered transitional metal dichalcogenides.
科研通智能强力驱动
Strongly Powered by AbleSci AI