Building sandwich-like carbon coated Si@CNTs composites as high-performance anode materials for lithium-ion batteries

阳极 材料科学 锂(药物) 涂层 电化学 碳纤维 复合材料 碳纳米管 化学工程 电化学动力学 无定形固体 纳米技术 电极 复合数 冶金 化学 物理化学 内分泌学 有机化学 工程类 医学
作者
Wei Xiao,Yinjie Qiu,Quan Xu,Jingjing Wang,Chong Xie,Jianhong Peng,Junhua Hu,Jiujun Zhang,Xifei Li
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:364: 137278-137278 被引量:34
标识
DOI:10.1016/j.electacta.2020.137278
摘要

The naturally abundant and environmentally friendly silicon (Si) with a high theoretical capacity has emerged as a promising anode material for lithium-ion batteries. However, its huge volume change upon lithiation/delithiation has destructed the structural integrity and stability, while the poor electronic/ionic conductivities have severely diminished the reaction kinetics, leading to a poor electrochemical performance of Si anode. To circumvent these challenges, the Si nanoparticles have been initially grown on CNTs through a magnesiothermic reduction of SiO2 and rationally coated by amorphous carbon via a carbonization of phenolic resin. Specifically, the carbon coating, which would not only suppress the structural collapse of Si in large volumetric variation upon cycling, but also facilitate the migrations of electrons and ions, was found to determine the electrochemical reversibility and durability of [email protected]@CNTs composites. Benefitted from the significantly improved structural stability and reaction kinetics, the sandwich-like coaxial [email protected]@CNTs with a desirable carbon coating would exhibit a highly stable reversible capacity of 496 mAh g−1 with a 76.8% capacity retention over 800 cycles at a current density of 500 mA g−1 and maintain a large reversible capacity of 551 mAh g−1 at a current density of 2000 mA g−1. This novel construction of [email protected]@CNTs sandwich nanostructure would contribute to the research development of highly stable and durable silicon anode materials for high-energy and long-life lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
烟雾完成签到,获得积分10
1秒前
1秒前
充电宝应助ly普鲁卡因采纳,获得10
2秒前
xuexuexixi123完成签到 ,获得积分10
2秒前
2秒前
天天快乐应助Sink采纳,获得10
3秒前
5秒前
LZHWSND发布了新的文献求助10
5秒前
大翔守住了完成签到,获得积分10
6秒前
yu发布了新的文献求助10
6秒前
ding应助guositing采纳,获得10
7秒前
7秒前
影子完成签到,获得积分10
7秒前
8秒前
8秒前
茶弥完成签到 ,获得积分10
8秒前
9秒前
CipherSage应助莫问采纳,获得10
10秒前
Aurora完成签到,获得积分10
11秒前
阿江shk完成签到,获得积分10
11秒前
lllkkk发布了新的文献求助10
11秒前
damao4361556完成签到,获得积分20
11秒前
11秒前
小蘑菇应助斯文宛秋采纳,获得10
12秒前
希望天下0贩的0应助亦hcy采纳,获得10
12秒前
boardblack发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
李爱国应助yu采纳,获得10
14秒前
15秒前
15秒前
16秒前
眼睛大的凌寒完成签到,获得积分10
17秒前
刘柯南完成签到,获得积分10
17秒前
luca发布了新的文献求助10
17秒前
Kx发布了新的文献求助10
18秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124857
求助须知:如何正确求助?哪些是违规求助? 2775196
关于积分的说明 7725657
捐赠科研通 2430668
什么是DOI,文献DOI怎么找? 1291358
科研通“疑难数据库(出版商)”最低求助积分说明 622123
版权声明 600328