Building sandwich-like carbon coated Si@CNTs composites as high-performance anode materials for lithium-ion batteries

阳极 材料科学 锂(药物) 涂层 电化学 碳纤维 复合材料 碳纳米管 化学工程 电化学动力学 无定形固体 纳米技术 电极 复合数 冶金 化学 物理化学 内分泌学 有机化学 工程类 医学
作者
Wei Xiao,Yinjie Qiu,Quan Xu,Jingjing Wang,Chong Xie,Jianhong Peng,Junhua Hu,Jiujun Zhang,Xifei Li
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:364: 137278-137278 被引量:34
标识
DOI:10.1016/j.electacta.2020.137278
摘要

The naturally abundant and environmentally friendly silicon (Si) with a high theoretical capacity has emerged as a promising anode material for lithium-ion batteries. However, its huge volume change upon lithiation/delithiation has destructed the structural integrity and stability, while the poor electronic/ionic conductivities have severely diminished the reaction kinetics, leading to a poor electrochemical performance of Si anode. To circumvent these challenges, the Si nanoparticles have been initially grown on CNTs through a magnesiothermic reduction of SiO2 and rationally coated by amorphous carbon via a carbonization of phenolic resin. Specifically, the carbon coating, which would not only suppress the structural collapse of Si in large volumetric variation upon cycling, but also facilitate the migrations of electrons and ions, was found to determine the electrochemical reversibility and durability of [email protected]@CNTs composites. Benefitted from the significantly improved structural stability and reaction kinetics, the sandwich-like coaxial [email protected]@CNTs with a desirable carbon coating would exhibit a highly stable reversible capacity of 496 mAh g−1 with a 76.8% capacity retention over 800 cycles at a current density of 500 mA g−1 and maintain a large reversible capacity of 551 mAh g−1 at a current density of 2000 mA g−1. This novel construction of [email protected]@CNTs sandwich nanostructure would contribute to the research development of highly stable and durable silicon anode materials for high-energy and long-life lithium-ion batteries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
5秒前
重重发布了新的文献求助10
5秒前
歪比八不完成签到,获得积分10
7秒前
SciGPT应助zzz采纳,获得10
7秒前
悄悄完成签到 ,获得积分10
8秒前
17608283832发布了新的文献求助10
10秒前
12秒前
文艺的访曼应助asdf采纳,获得10
12秒前
外向立辉完成签到,获得积分10
13秒前
14秒前
ss完成签到,获得积分10
15秒前
16秒前
可爱万怨完成签到,获得积分10
16秒前
17秒前
科目三应助科研通管家采纳,获得10
19秒前
yznfly应助科研通管家采纳,获得200
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
只争朝夕应助squirrelcone采纳,获得10
19秒前
gkads发布了新的文献求助10
20秒前
搜集达人应助whs采纳,获得10
20秒前
隐形曼青应助千寻采纳,获得10
20秒前
21秒前
21秒前
21秒前
Lemonade完成签到,获得积分10
22秒前
22秒前
冷酷孤风发布了新的文献求助10
24秒前
maizencrna完成签到,获得积分10
24秒前
丘比特应助光轮2000采纳,获得10
25秒前
26秒前
27秒前
27秒前
csx应助Madelinephi采纳,获得10
27秒前
顾矜应助生物摸鱼大师采纳,获得10
28秒前
平常的如风完成签到,获得积分10
29秒前
核桃应助zyh采纳,获得30
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563093
求助须知:如何正确求助?哪些是违规求助? 4647860
关于积分的说明 14683144
捐赠科研通 4590036
什么是DOI,文献DOI怎么找? 2518252
邀请新用户注册赠送积分活动 1491004
关于科研通互助平台的介绍 1462318