Building sandwich-like carbon coated Si@CNTs composites as high-performance anode materials for lithium-ion batteries

阳极 材料科学 锂(药物) 涂层 电化学 碳纤维 复合材料 碳纳米管 化学工程 电化学动力学 无定形固体 纳米技术 电极 复合数 冶金 化学 物理化学 内分泌学 有机化学 工程类 医学
作者
Wei Xiao,Yinjie Qiu,Quan Xu,Jingjing Wang,Chong Xie,Jianhong Peng,Junhua Hu,Jiujun Zhang,Xifei Li
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:364: 137278-137278 被引量:34
标识
DOI:10.1016/j.electacta.2020.137278
摘要

The naturally abundant and environmentally friendly silicon (Si) with a high theoretical capacity has emerged as a promising anode material for lithium-ion batteries. However, its huge volume change upon lithiation/delithiation has destructed the structural integrity and stability, while the poor electronic/ionic conductivities have severely diminished the reaction kinetics, leading to a poor electrochemical performance of Si anode. To circumvent these challenges, the Si nanoparticles have been initially grown on CNTs through a magnesiothermic reduction of SiO2 and rationally coated by amorphous carbon via a carbonization of phenolic resin. Specifically, the carbon coating, which would not only suppress the structural collapse of Si in large volumetric variation upon cycling, but also facilitate the migrations of electrons and ions, was found to determine the electrochemical reversibility and durability of [email protected]@CNTs composites. Benefitted from the significantly improved structural stability and reaction kinetics, the sandwich-like coaxial [email protected]@CNTs with a desirable carbon coating would exhibit a highly stable reversible capacity of 496 mAh g−1 with a 76.8% capacity retention over 800 cycles at a current density of 500 mA g−1 and maintain a large reversible capacity of 551 mAh g−1 at a current density of 2000 mA g−1. This novel construction of [email protected]@CNTs sandwich nanostructure would contribute to the research development of highly stable and durable silicon anode materials for high-energy and long-life lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助李枭采纳,获得10
刚刚
鸣蜩阿六完成签到,获得积分10
刚刚
完美世界应助呆萌士晋采纳,获得10
刚刚
1秒前
赵赵赵关注了科研通微信公众号
1秒前
冰冰发布了新的文献求助10
1秒前
瑞_完成签到,获得积分10
1秒前
缚大哥完成签到,获得积分20
2秒前
Lyven完成签到 ,获得积分10
2秒前
通~发布了新的文献求助10
2秒前
苯酚完成签到 ,获得积分10
2秒前
Left发布了新的文献求助10
2秒前
3秒前
logan完成签到,获得积分10
3秒前
CCY完成签到,获得积分10
3秒前
守夜人发布了新的文献求助10
4秒前
4秒前
小蘑菇应助zhui采纳,获得10
5秒前
5秒前
5秒前
科研通AI5应助猪猪hero采纳,获得10
5秒前
6秒前
星星泡饭发布了新的文献求助10
6秒前
DC完成签到,获得积分10
6秒前
科研通AI5应助111采纳,获得10
6秒前
隐形曼青应助jy采纳,获得10
7秒前
缚大哥发布了新的文献求助10
8秒前
9秒前
9秒前
在水一方应助无情的白桃采纳,获得10
10秒前
Li猪猪完成签到,获得积分10
10秒前
11秒前
怕孤独的白梦完成签到,获得积分20
11秒前
12秒前
鳗鱼灵寒发布了新的文献求助10
12秒前
潇洒的青完成签到,获得积分10
12秒前
眼里有光的阿墨完成签到 ,获得积分10
13秒前
13秒前
13秒前
GG完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794