Building sandwich-like carbon coated Si@CNTs composites as high-performance anode materials for lithium-ion batteries

阳极 材料科学 锂(药物) 涂层 电化学 碳纤维 复合材料 碳纳米管 化学工程 电化学动力学 无定形固体 纳米技术 电极 复合数 冶金 化学 物理化学 内分泌学 有机化学 工程类 医学
作者
Wei Xiao,Yinjie Qiu,Quan Xu,Jingjing Wang,Chong Xie,Jianhong Peng,Junhua Hu,Jiujun Zhang,Xifei Li
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:364: 137278-137278 被引量:34
标识
DOI:10.1016/j.electacta.2020.137278
摘要

The naturally abundant and environmentally friendly silicon (Si) with a high theoretical capacity has emerged as a promising anode material for lithium-ion batteries. However, its huge volume change upon lithiation/delithiation has destructed the structural integrity and stability, while the poor electronic/ionic conductivities have severely diminished the reaction kinetics, leading to a poor electrochemical performance of Si anode. To circumvent these challenges, the Si nanoparticles have been initially grown on CNTs through a magnesiothermic reduction of SiO2 and rationally coated by amorphous carbon via a carbonization of phenolic resin. Specifically, the carbon coating, which would not only suppress the structural collapse of Si in large volumetric variation upon cycling, but also facilitate the migrations of electrons and ions, was found to determine the electrochemical reversibility and durability of [email protected]@CNTs composites. Benefitted from the significantly improved structural stability and reaction kinetics, the sandwich-like coaxial [email protected]@CNTs with a desirable carbon coating would exhibit a highly stable reversible capacity of 496 mAh g−1 with a 76.8% capacity retention over 800 cycles at a current density of 500 mA g−1 and maintain a large reversible capacity of 551 mAh g−1 at a current density of 2000 mA g−1. This novel construction of [email protected]@CNTs sandwich nanostructure would contribute to the research development of highly stable and durable silicon anode materials for high-energy and long-life lithium-ion batteries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分20
刚刚
Ava应助WB采纳,获得10
2秒前
3秒前
3秒前
魔幻诗兰完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
stellc完成签到,获得积分10
4秒前
4秒前
祝你开心发布了新的文献求助10
5秒前
追寻宛海完成签到,获得积分10
6秒前
KKK发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
迷人静白完成签到,获得积分10
8秒前
8秒前
9秒前
wangye发布了新的文献求助10
9秒前
wanci应助zyyyyyyyy采纳,获得10
9秒前
9秒前
追寻宛海发布了新的文献求助15
10秒前
10秒前
复杂惜霜发布了新的文献求助10
10秒前
Jasper应助激昂的逊采纳,获得10
10秒前
黎先生发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
wanci应助务实的西牛采纳,获得10
12秒前
彭于晏应助ww采纳,获得10
12秒前
浮游应助勇yi采纳,获得10
12秒前
12秒前
怀玉发布了新的文献求助10
14秒前
科研通AI6应助SONG采纳,获得10
14秒前
科研通AI6应助是why耶采纳,获得10
14秒前
14秒前
eijgnij发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901