阳极
材料科学
锂(药物)
涂层
电化学
碳纤维
复合材料
硅
碳纳米管
化学工程
电化学动力学
无定形固体
纳米技术
电极
复合数
冶金
化学
物理化学
内分泌学
有机化学
工程类
医学
作者
Wei Xiao,Yinjie Qiu,Quan Xu,Jingjing Wang,Chong Xie,Jianhong Peng,Junhua Hu,Jiujun Zhang,Xifei Li
标识
DOI:10.1016/j.electacta.2020.137278
摘要
The naturally abundant and environmentally friendly silicon (Si) with a high theoretical capacity has emerged as a promising anode material for lithium-ion batteries. However, its huge volume change upon lithiation/delithiation has destructed the structural integrity and stability, while the poor electronic/ionic conductivities have severely diminished the reaction kinetics, leading to a poor electrochemical performance of Si anode. To circumvent these challenges, the Si nanoparticles have been initially grown on CNTs through a magnesiothermic reduction of SiO2 and rationally coated by amorphous carbon via a carbonization of phenolic resin. Specifically, the carbon coating, which would not only suppress the structural collapse of Si in large volumetric variation upon cycling, but also facilitate the migrations of electrons and ions, was found to determine the electrochemical reversibility and durability of [email protected]@CNTs composites. Benefitted from the significantly improved structural stability and reaction kinetics, the sandwich-like coaxial [email protected]@CNTs with a desirable carbon coating would exhibit a highly stable reversible capacity of 496 mAh g−1 with a 76.8% capacity retention over 800 cycles at a current density of 500 mA g−1 and maintain a large reversible capacity of 551 mAh g−1 at a current density of 2000 mA g−1. This novel construction of [email protected]@CNTs sandwich nanostructure would contribute to the research development of highly stable and durable silicon anode materials for high-energy and long-life lithium-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI