Building sandwich-like carbon coated Si@CNTs composites as high-performance anode materials for lithium-ion batteries

阳极 材料科学 锂(药物) 涂层 电化学 碳纤维 复合材料 碳纳米管 化学工程 电化学动力学 无定形固体 纳米技术 电极 复合数 冶金 化学 物理化学 内分泌学 有机化学 工程类 医学
作者
Wei Xiao,Yinjie Qiu,Quan Xu,Jingjing Wang,Chong Xie,Jianhong Peng,Junhua Hu,Jiujun Zhang,Xifei Li
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:364: 137278-137278 被引量:34
标识
DOI:10.1016/j.electacta.2020.137278
摘要

The naturally abundant and environmentally friendly silicon (Si) with a high theoretical capacity has emerged as a promising anode material for lithium-ion batteries. However, its huge volume change upon lithiation/delithiation has destructed the structural integrity and stability, while the poor electronic/ionic conductivities have severely diminished the reaction kinetics, leading to a poor electrochemical performance of Si anode. To circumvent these challenges, the Si nanoparticles have been initially grown on CNTs through a magnesiothermic reduction of SiO2 and rationally coated by amorphous carbon via a carbonization of phenolic resin. Specifically, the carbon coating, which would not only suppress the structural collapse of Si in large volumetric variation upon cycling, but also facilitate the migrations of electrons and ions, was found to determine the electrochemical reversibility and durability of [email protected]@CNTs composites. Benefitted from the significantly improved structural stability and reaction kinetics, the sandwich-like coaxial [email protected]@CNTs with a desirable carbon coating would exhibit a highly stable reversible capacity of 496 mAh g−1 with a 76.8% capacity retention over 800 cycles at a current density of 500 mA g−1 and maintain a large reversible capacity of 551 mAh g−1 at a current density of 2000 mA g−1. This novel construction of [email protected]@CNTs sandwich nanostructure would contribute to the research development of highly stable and durable silicon anode materials for high-energy and long-life lithium-ion batteries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
行者在远方完成签到 ,获得积分10
2秒前
32429606完成签到 ,获得积分10
3秒前
怡然的鱼发布了新的文献求助10
3秒前
历史真相发布了新的文献求助10
4秒前
风中元瑶完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
刘雪晴完成签到 ,获得积分10
11秒前
勾勾1991完成签到,获得积分10
12秒前
整齐的大开完成签到 ,获得积分0
12秒前
lulu完成签到 ,获得积分10
13秒前
xinxiangshicheng完成签到 ,获得积分10
14秒前
gf完成签到 ,获得积分10
20秒前
简奥斯汀完成签到 ,获得积分10
21秒前
zyx完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
25秒前
sora完成签到,获得积分10
26秒前
iiinns发布了新的文献求助10
26秒前
112222完成签到 ,获得积分10
27秒前
qqqdewq完成签到,获得积分10
27秒前
天天快乐应助历史真相采纳,获得10
27秒前
悠然完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
30秒前
30秒前
赫连人杰完成签到 ,获得积分10
33秒前
33秒前
iiinns完成签到,获得积分10
35秒前
村头保安完成签到,获得积分10
36秒前
怡然的鱼完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
40秒前
Murphy~完成签到,获得积分10
41秒前
一白完成签到 ,获得积分10
42秒前
酷酷的紫南完成签到 ,获得积分10
43秒前
喵喵666完成签到,获得积分10
45秒前
威威发布了新的文献求助10
46秒前
乐乐呀完成签到 ,获得积分10
46秒前
专注笑珊完成签到,获得积分10
46秒前
Kelly1426完成签到,获得积分10
47秒前
júpiter完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869297
关于积分的说明 15108591
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536417
关于科研通互助平台的介绍 1494839