Attribute-guided image generation of three-dimensional computed tomography images of lung nodules using a generative adversarial network

结核(地质) 接收机工作特性 计算机断层摄影术 放射科 肺孤立结节 断层摄影术 人工智能 核医学 医学 计算机科学 模式识别(心理学) 机器学习 生物 内科学 古生物学
作者
Motohiro Nishio,Chisako Muramatsu,Shunjiro Noguchi,Hirotsugu Nakai,Koji Fujimoto,Ryo Sakamoto,Hiroshi Fujita
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:126: 104032-104032 被引量:16
标识
DOI:10.1016/j.compbiomed.2020.104032
摘要

To develop and evaluate a three-dimensional (3D) generative model of computed tomography (CT) images of lung nodules using a generative adversarial network (GAN). To guide the GAN, lung nodule size was used. A public CT dataset of lung nodules was used, from where 1182 lung nodules were obtained. Our proposed GAN model used masked 3D CT images and nodule size information to generate images. To evaluate the generated CT images, two radiologists visually evaluated whether the CT images with lung nodule were true or generated, and the diagnostic ability was evaluated using receiver-operating characteristic analysis and area under the curves (AUC). Then, two models for classifying nodule size into five categories were trained, one using the true and the other using the generated CT images of lung nodules. Using true CT images, the classification accuracy of the sizes of the true lung nodules was calculated for the two classification models. The sensitivity, specificity, and AUC of the two radiologists were respectively as follows: radiologist 1: 81.3%, 37.7%, and 0.592; radiologist 2: 77.1%, 30.2%, and 0.597. For categorization of nodule size, the mean accuracy of the classification model constructed with true CT images was 85% (range 83.2–86.1%), and that with generated CT images was 85% (range 82.2–88.1%). Our results show that it was possible to generate 3D CT images of lung nodules that could be used to construct a classification model of lung nodule size without true CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leo完成签到 ,获得积分10
刚刚
WXG发布了新的文献求助10
1秒前
打打应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
优you发布了新的文献求助20
2秒前
情怀应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得20
2秒前
Owen应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
科目三应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
ding应助科研通管家采纳,获得10
3秒前
迟迟完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
WN发布了新的文献求助10
4秒前
NINE发布了新的文献求助10
4秒前
王超发布了新的文献求助10
5秒前
学术学习发布了新的文献求助30
6秒前
6秒前
看书完成签到,获得积分10
7秒前
qiang完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
苹什么发布了新的文献求助10
9秒前
zz发布了新的文献求助10
10秒前
wx2360ouc完成签到 ,获得积分10
10秒前
Uhazi完成签到,获得积分10
11秒前
科研通AI6应助科研小黄采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406216
求助须知:如何正确求助?哪些是违规求助? 4524308
关于积分的说明 14097238
捐赠科研通 4438066
什么是DOI,文献DOI怎么找? 2435946
邀请新用户注册赠送积分活动 1428078
关于科研通互助平台的介绍 1406280