Attribute-guided image generation of three-dimensional computed tomography images of lung nodules using a generative adversarial network

结核(地质) 接收机工作特性 计算机断层摄影术 放射科 肺孤立结节 断层摄影术 人工智能 核医学 医学 计算机科学 模式识别(心理学) 机器学习 生物 内科学 古生物学
作者
Motohiro Nishio,Chisako Muramatsu,Shunjiro Noguchi,Hirotsugu Nakai,Koji Fujimoto,Ryo Sakamoto,Hiroshi Fujita
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:126: 104032-104032 被引量:16
标识
DOI:10.1016/j.compbiomed.2020.104032
摘要

To develop and evaluate a three-dimensional (3D) generative model of computed tomography (CT) images of lung nodules using a generative adversarial network (GAN). To guide the GAN, lung nodule size was used. A public CT dataset of lung nodules was used, from where 1182 lung nodules were obtained. Our proposed GAN model used masked 3D CT images and nodule size information to generate images. To evaluate the generated CT images, two radiologists visually evaluated whether the CT images with lung nodule were true or generated, and the diagnostic ability was evaluated using receiver-operating characteristic analysis and area under the curves (AUC). Then, two models for classifying nodule size into five categories were trained, one using the true and the other using the generated CT images of lung nodules. Using true CT images, the classification accuracy of the sizes of the true lung nodules was calculated for the two classification models. The sensitivity, specificity, and AUC of the two radiologists were respectively as follows: radiologist 1: 81.3%, 37.7%, and 0.592; radiologist 2: 77.1%, 30.2%, and 0.597. For categorization of nodule size, the mean accuracy of the classification model constructed with true CT images was 85% (range 83.2–86.1%), and that with generated CT images was 85% (range 82.2–88.1%). Our results show that it was possible to generate 3D CT images of lung nodules that could be used to construct a classification model of lung nodule size without true CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
东木完成签到,获得积分10
刚刚
刚刚
17完成签到 ,获得积分20
1秒前
麻果应助淼漫采纳,获得10
2秒前
子啼当归发布了新的文献求助10
4秒前
Emma发布了新的文献求助10
4秒前
orixero应助KK采纳,获得30
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
斯文败类应助科研通管家采纳,获得20
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
佳佳应助科研通管家采纳,获得10
6秒前
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
小小aa16完成签到,获得积分10
7秒前
共享精神应助123pc采纳,获得10
8秒前
shi123发布了新的文献求助10
8秒前
9秒前
核桃应助明天开始戒绿茶采纳,获得10
10秒前
Light完成签到,获得积分10
10秒前
10秒前
爆米花应助kekerenren采纳,获得10
11秒前
xhjh03发布了新的文献求助10
11秒前
14秒前
a成发布了新的文献求助10
14秒前
pirongshi发布了新的文献求助10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371