Attribute-guided image generation of three-dimensional computed tomography images of lung nodules using a generative adversarial network

结核(地质) 接收机工作特性 计算机断层摄影术 放射科 肺孤立结节 断层摄影术 人工智能 核医学 医学 计算机科学 模式识别(心理学) 机器学习 生物 内科学 古生物学
作者
Motohiro Nishio,Chisako Muramatsu,Shunjiro Noguchi,Hirotsugu Nakai,Koji Fujimoto,Ryo Sakamoto,Hiroshi Fujita
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:126: 104032-104032 被引量:16
标识
DOI:10.1016/j.compbiomed.2020.104032
摘要

To develop and evaluate a three-dimensional (3D) generative model of computed tomography (CT) images of lung nodules using a generative adversarial network (GAN). To guide the GAN, lung nodule size was used. A public CT dataset of lung nodules was used, from where 1182 lung nodules were obtained. Our proposed GAN model used masked 3D CT images and nodule size information to generate images. To evaluate the generated CT images, two radiologists visually evaluated whether the CT images with lung nodule were true or generated, and the diagnostic ability was evaluated using receiver-operating characteristic analysis and area under the curves (AUC). Then, two models for classifying nodule size into five categories were trained, one using the true and the other using the generated CT images of lung nodules. Using true CT images, the classification accuracy of the sizes of the true lung nodules was calculated for the two classification models. The sensitivity, specificity, and AUC of the two radiologists were respectively as follows: radiologist 1: 81.3%, 37.7%, and 0.592; radiologist 2: 77.1%, 30.2%, and 0.597. For categorization of nodule size, the mean accuracy of the classification model constructed with true CT images was 85% (range 83.2–86.1%), and that with generated CT images was 85% (range 82.2–88.1%). Our results show that it was possible to generate 3D CT images of lung nodules that could be used to construct a classification model of lung nodule size without true CT images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kiminonawa应助甜甜谷波采纳,获得10
刚刚
Abyxwz发布了新的文献求助10
刚刚
刚刚
1秒前
wly发布了新的文献求助10
1秒前
1秒前
2秒前
Una完成签到,获得积分10
2秒前
小野发布了新的文献求助10
2秒前
852应助艾可白采纳,获得10
3秒前
李爱国应助ST采纳,获得10
3秒前
酷波er应助哒哒哒采纳,获得10
4秒前
4秒前
GXWFDC完成签到 ,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
7秒前
虎啊虎啊发布了新的文献求助10
7秒前
7秒前
墨染完成签到 ,获得积分10
8秒前
8秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
Return应助科研通管家采纳,获得10
9秒前
rebubu应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
9秒前
852应助科研通管家采纳,获得10
9秒前
9秒前
chen应助科研通管家采纳,获得10
9秒前
游子轩应助科研通管家采纳,获得10
10秒前
123456完成签到,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
Return应助科研通管家采纳,获得10
10秒前
10秒前
无极微光应助科研通管家采纳,获得20
10秒前
Orange应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得200
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800