Attribute-guided image generation of three-dimensional computed tomography images of lung nodules using a generative adversarial network

结核(地质) 接收机工作特性 计算机断层摄影术 放射科 肺孤立结节 断层摄影术 人工智能 核医学 医学 计算机科学 模式识别(心理学) 机器学习 生物 内科学 古生物学
作者
Motohiro Nishio,Chisako Muramatsu,Shunjiro Noguchi,Hirotsugu Nakai,Koji Fujimoto,Ryo Sakamoto,Hiroshi Fujita
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:126: 104032-104032 被引量:16
标识
DOI:10.1016/j.compbiomed.2020.104032
摘要

To develop and evaluate a three-dimensional (3D) generative model of computed tomography (CT) images of lung nodules using a generative adversarial network (GAN). To guide the GAN, lung nodule size was used. A public CT dataset of lung nodules was used, from where 1182 lung nodules were obtained. Our proposed GAN model used masked 3D CT images and nodule size information to generate images. To evaluate the generated CT images, two radiologists visually evaluated whether the CT images with lung nodule were true or generated, and the diagnostic ability was evaluated using receiver-operating characteristic analysis and area under the curves (AUC). Then, two models for classifying nodule size into five categories were trained, one using the true and the other using the generated CT images of lung nodules. Using true CT images, the classification accuracy of the sizes of the true lung nodules was calculated for the two classification models. The sensitivity, specificity, and AUC of the two radiologists were respectively as follows: radiologist 1: 81.3%, 37.7%, and 0.592; radiologist 2: 77.1%, 30.2%, and 0.597. For categorization of nodule size, the mean accuracy of the classification model constructed with true CT images was 85% (range 83.2–86.1%), and that with generated CT images was 85% (range 82.2–88.1%). Our results show that it was possible to generate 3D CT images of lung nodules that could be used to construct a classification model of lung nodule size without true CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
ABB完成签到,获得积分10
1秒前
1秒前
1秒前
想要毕业完成签到,获得积分10
2秒前
超人不会飞完成签到,获得积分10
4秒前
无所谓停留完成签到,获得积分10
5秒前
6秒前
犹豫怀寒发布了新的文献求助10
7秒前
7秒前
夜幕应助盛京烟雨行采纳,获得200
9秒前
9秒前
9秒前
Perry关注了科研通微信公众号
9秒前
小杨发布了新的文献求助10
9秒前
ls关闭了ls文献求助
10秒前
JYoneo发布了新的文献求助10
10秒前
领导范儿应助xiaoqi采纳,获得10
11秒前
大个应助姚友进采纳,获得10
12秒前
小木同学完成签到,获得积分10
12秒前
野性的沉鱼完成签到,获得积分10
12秒前
汉堡包应助优美的可乐采纳,获得10
14秒前
翊古发布了新的文献求助30
15秒前
16秒前
17秒前
隐形曼青应助标致的青梦采纳,获得10
21秒前
zjcomposite完成签到,获得积分10
21秒前
Perry发布了新的文献求助10
22秒前
JYoneo完成签到,获得积分10
23秒前
moonglow完成签到,获得积分10
23秒前
向日葵的暖洋洋完成签到,获得积分10
23秒前
Seciy完成签到 ,获得积分10
23秒前
徐涵发布了新的文献求助10
24秒前
科研通AI6应助贝果奶酪采纳,获得10
24秒前
在水一方应助吴桐采纳,获得10
24秒前
英俊白莲发布了新的文献求助10
25秒前
天天快乐应助liang采纳,获得10
25秒前
叶寻完成签到,获得积分20
25秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4535322
求助须知:如何正确求助?哪些是违规求助? 3971257
关于积分的说明 12303474
捐赠科研通 3637880
什么是DOI,文献DOI怎么找? 2002870
邀请新用户注册赠送积分活动 1038437
科研通“疑难数据库(出版商)”最低求助积分说明 927827