Attribute-guided image generation of three-dimensional computed tomography images of lung nodules using a generative adversarial network

结核(地质) 接收机工作特性 计算机断层摄影术 放射科 肺孤立结节 断层摄影术 人工智能 核医学 医学 计算机科学 模式识别(心理学) 机器学习 生物 内科学 古生物学
作者
Motohiro Nishio,Chisako Muramatsu,Shunjiro Noguchi,Hirotsugu Nakai,Koji Fujimoto,Ryo Sakamoto,Hiroshi Fujita
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:126: 104032-104032 被引量:16
标识
DOI:10.1016/j.compbiomed.2020.104032
摘要

To develop and evaluate a three-dimensional (3D) generative model of computed tomography (CT) images of lung nodules using a generative adversarial network (GAN). To guide the GAN, lung nodule size was used. A public CT dataset of lung nodules was used, from where 1182 lung nodules were obtained. Our proposed GAN model used masked 3D CT images and nodule size information to generate images. To evaluate the generated CT images, two radiologists visually evaluated whether the CT images with lung nodule were true or generated, and the diagnostic ability was evaluated using receiver-operating characteristic analysis and area under the curves (AUC). Then, two models for classifying nodule size into five categories were trained, one using the true and the other using the generated CT images of lung nodules. Using true CT images, the classification accuracy of the sizes of the true lung nodules was calculated for the two classification models. The sensitivity, specificity, and AUC of the two radiologists were respectively as follows: radiologist 1: 81.3%, 37.7%, and 0.592; radiologist 2: 77.1%, 30.2%, and 0.597. For categorization of nodule size, the mean accuracy of the classification model constructed with true CT images was 85% (range 83.2–86.1%), and that with generated CT images was 85% (range 82.2–88.1%). Our results show that it was possible to generate 3D CT images of lung nodules that could be used to construct a classification model of lung nodule size without true CT images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Much完成签到 ,获得积分10
1秒前
凡华完成签到 ,获得积分10
3秒前
奋进中的科研小菜鸟完成签到,获得积分10
4秒前
7秒前
星空完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
12秒前
巧克力完成签到 ,获得积分10
12秒前
HU完成签到,获得积分10
13秒前
垣味栗子酱完成签到,获得积分20
14秒前
胖胖玩啊玩完成签到 ,获得积分10
16秒前
Tammy完成签到,获得积分10
16秒前
阿伟完成签到,获得积分10
18秒前
无极微光应助白华苍松采纳,获得20
19秒前
酷酷的安柏完成签到 ,获得积分10
20秒前
21秒前
lovekobe完成签到 ,获得积分10
21秒前
鲁卓林完成签到,获得积分10
21秒前
甜美傲蕾完成签到,获得积分10
22秒前
22秒前
yunt完成签到 ,获得积分10
24秒前
小高完成签到 ,获得积分10
25秒前
kyros完成签到,获得积分10
26秒前
Java完成签到,获得积分10
26秒前
老实的黑米完成签到 ,获得积分10
27秒前
亲爱的桃乐茜完成签到 ,获得积分10
27秒前
WW完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
七yy完成签到 ,获得积分10
30秒前
甜蜜冷风完成签到,获得积分10
32秒前
李思超完成签到 ,获得积分10
32秒前
健壮的凝冬完成签到 ,获得积分10
33秒前
求真完成签到,获得积分10
34秒前
36秒前
浮游应助草木采纳,获得10
36秒前
白夜完成签到 ,获得积分10
36秒前
36秒前
爆米花完成签到,获得积分10
38秒前
38秒前
39秒前
40秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590