Fast point spread function modeling with deep learning

点扩散函数 弱引力透镜 计算机科学 物理 卷积神经网络 稳健主成分分析 主成分分析 蒙特卡罗方法 深度学习 人工智能 银河系 天体物理学 红移 统计 数学
作者
Jörg Herbel,Tomasz Kacprzak,A. Amara,Alexandre Réfrégier,Aurélien Lucchi
出处
期刊:Journal of Cosmology and Astroparticle Physics [Institute of Physics]
卷期号:2018 (07): 054-054 被引量:45
标识
DOI:10.1088/1475-7516/2018/07/054
摘要

Modeling the Point Spread Function (PSF) of wide-field surveys is vital for many astrophysical applications and cosmological probes including weak gravitational lensing. The PSF smears the image of any recorded object and therefore needs to be taken into account when inferring properties of galaxies from astronomical images. In the case of cosmic shear, the PSF is one of the dominant sources of systematic errors and must be treated carefully to avoid biases in cosmological parameters. Recently, forward modeling approaches to calibrate shear measurements within the Monte-Carlo Control Loops (MCCL) framework have been developed. These methods typically require simulating a large amount of wide-field images, thus, the simulations need to be very fast yet have realistic properties in key features such as the PSF pattern. Hence, such forward modeling approaches require a very flexible PSF model, which is quick to evaluate and whose parameters can be estimated reliably from survey data. We present a PSF model that meets these requirements based on a fast deep-learning method to estimate its free parameters. We demonstrate our approach on publicly available SDSS data. We extract the most important features of the SDSS sample via principal component analysis. Next, we construct our model based on perturbations of a fixed base profile, ensuring that it captures these features. We then train a Convolutional Neural Network to estimate the free parameters of the model from noisy images of the PSF. This allows us to render a model image of each star, which we compare to the SDSS stars to evaluate the performance of our method. We find that our approach is able to accurately reproduce the SDSS PSF at the pixel level, which, due to the speed of both the model evaluation and the parameter estimation, offers good prospects for incorporating our method into the MCCL framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
美丽的安珊完成签到,获得积分10
2秒前
2秒前
4秒前
Gilana完成签到,获得积分10
4秒前
xyh发布了新的文献求助10
4秒前
江璃完成签到,获得积分10
5秒前
TT发布了新的文献求助10
5秒前
美梦成真完成签到,获得积分10
6秒前
Gakay完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
szj完成签到,获得积分0
8秒前
旦皋完成签到,获得积分10
8秒前
赘婿应助花壳在逃野猪采纳,获得10
9秒前
卷卷完成签到,获得积分10
11秒前
JSY完成签到 ,获得积分20
11秒前
xyh完成签到,获得积分10
12秒前
小曾应助Florencia采纳,获得10
13秒前
神外王001完成签到 ,获得积分10
13秒前
18秒前
你是谁完成签到,获得积分10
19秒前
majf完成签到,获得积分10
20秒前
linhanwenzhou完成签到,获得积分10
20秒前
JSY关注了科研通微信公众号
20秒前
853225598完成签到,获得积分10
20秒前
798完成签到,获得积分10
21秒前
善学以致用应助董怼怼采纳,获得10
21秒前
妍儿完成签到,获得积分20
22秒前
隐形曼青应助高大的水壶采纳,获得10
22秒前
马哥二弟无敌完成签到 ,获得积分10
23秒前
24秒前
Florencia完成签到,获得积分10
24秒前
务实颜完成签到 ,获得积分10
24秒前
24秒前
amberzyc应助小远采纳,获得10
25秒前
25秒前
26秒前
26秒前
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029