Fast point spread function modeling with deep learning

点扩散函数 弱引力透镜 计算机科学 物理 卷积神经网络 稳健主成分分析 主成分分析 蒙特卡罗方法 深度学习 人工智能 银河系 天体物理学 红移 统计 数学
作者
Jörg Herbel,Tomasz Kacprzak,A. Amara,Alexandre Réfrégier,Aurélien Lucchi
出处
期刊:Journal of Cosmology and Astroparticle Physics [IOP Publishing]
卷期号:2018 (07): 054-054 被引量:45
标识
DOI:10.1088/1475-7516/2018/07/054
摘要

Modeling the Point Spread Function (PSF) of wide-field surveys is vital for many astrophysical applications and cosmological probes including weak gravitational lensing. The PSF smears the image of any recorded object and therefore needs to be taken into account when inferring properties of galaxies from astronomical images. In the case of cosmic shear, the PSF is one of the dominant sources of systematic errors and must be treated carefully to avoid biases in cosmological parameters. Recently, forward modeling approaches to calibrate shear measurements within the Monte-Carlo Control Loops (MCCL) framework have been developed. These methods typically require simulating a large amount of wide-field images, thus, the simulations need to be very fast yet have realistic properties in key features such as the PSF pattern. Hence, such forward modeling approaches require a very flexible PSF model, which is quick to evaluate and whose parameters can be estimated reliably from survey data. We present a PSF model that meets these requirements based on a fast deep-learning method to estimate its free parameters. We demonstrate our approach on publicly available SDSS data. We extract the most important features of the SDSS sample via principal component analysis. Next, we construct our model based on perturbations of a fixed base profile, ensuring that it captures these features. We then train a Convolutional Neural Network to estimate the free parameters of the model from noisy images of the PSF. This allows us to render a model image of each star, which we compare to the SDSS stars to evaluate the performance of our method. We find that our approach is able to accurately reproduce the SDSS PSF at the pixel level, which, due to the speed of both the model evaluation and the parameter estimation, offers good prospects for incorporating our method into the MCCL framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮生发布了新的文献求助10
刚刚
wxy发布了新的文献求助30
1秒前
3秒前
少女徐必成完成签到 ,获得积分10
3秒前
wanci应助ElbingX采纳,获得30
4秒前
5秒前
阔达白筠完成签到,获得积分10
5秒前
路路通完成签到,获得积分10
5秒前
科研通AI2S应助Yolo采纳,获得10
7秒前
怡然绮彤发布了新的文献求助10
7秒前
7秒前
danpink发布了新的文献求助10
8秒前
张张发布了新的文献求助10
8秒前
8秒前
sfas发布了新的文献求助10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
NPC应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
fifteen应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
10秒前
杳鸢应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得30
11秒前
慕青应助科研通管家采纳,获得10
11秒前
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
不配.应助科研通管家采纳,获得20
11秒前
大个应助科研通管家采纳,获得10
11秒前
12秒前
12秒前
123完成签到,获得积分10
13秒前
斯文败类应助阿橘采纳,获得10
14秒前
养恩应助ccc采纳,获得10
14秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229126
求助须知:如何正确求助?哪些是违规求助? 2876954
关于积分的说明 8196847
捐赠科研通 2544250
什么是DOI,文献DOI怎么找? 1374230
科研通“疑难数据库(出版商)”最低求助积分说明 646923
邀请新用户注册赠送积分活动 621703