亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fast point spread function modeling with deep learning

点扩散函数 弱引力透镜 计算机科学 物理 卷积神经网络 稳健主成分分析 主成分分析 蒙特卡罗方法 深度学习 人工智能 银河系 天体物理学 红移 数学 统计
作者
Jörg Herbel,Tomasz Kacprzak,A. Amara,Alexandre Réfrégier,Aurélien Lucchi
出处
期刊:Journal of Cosmology and Astroparticle Physics [IOP Publishing]
卷期号:2018 (07): 054-054 被引量:45
标识
DOI:10.1088/1475-7516/2018/07/054
摘要

Modeling the Point Spread Function (PSF) of wide-field surveys is vital for many astrophysical applications and cosmological probes including weak gravitational lensing. The PSF smears the image of any recorded object and therefore needs to be taken into account when inferring properties of galaxies from astronomical images. In the case of cosmic shear, the PSF is one of the dominant sources of systematic errors and must be treated carefully to avoid biases in cosmological parameters. Recently, forward modeling approaches to calibrate shear measurements within the Monte-Carlo Control Loops (MCCL) framework have been developed. These methods typically require simulating a large amount of wide-field images, thus, the simulations need to be very fast yet have realistic properties in key features such as the PSF pattern. Hence, such forward modeling approaches require a very flexible PSF model, which is quick to evaluate and whose parameters can be estimated reliably from survey data. We present a PSF model that meets these requirements based on a fast deep-learning method to estimate its free parameters. We demonstrate our approach on publicly available SDSS data. We extract the most important features of the SDSS sample via principal component analysis. Next, we construct our model based on perturbations of a fixed base profile, ensuring that it captures these features. We then train a Convolutional Neural Network to estimate the free parameters of the model from noisy images of the PSF. This allows us to render a model image of each star, which we compare to the SDSS stars to evaluate the performance of our method. We find that our approach is able to accurately reproduce the SDSS PSF at the pixel level, which, due to the speed of both the model evaluation and the parameter estimation, offers good prospects for incorporating our method into the MCCL framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
3秒前
5秒前
潮鸣完成签到 ,获得积分10
6秒前
NiceSunnyDay完成签到 ,获得积分10
8秒前
哈哈完成签到,获得积分10
9秒前
wzccc发布了新的文献求助10
10秒前
12秒前
3sigma发布了新的文献求助10
17秒前
18秒前
19秒前
香樟沐雪发布了新的文献求助10
24秒前
脑洞疼应助3sigma采纳,获得10
26秒前
昏睡的芒果完成签到,获得积分10
27秒前
潇洒莞完成签到 ,获得积分10
27秒前
28秒前
传奇3应助疯狂的凝云采纳,获得10
31秒前
深情安青应助香樟沐雪采纳,获得10
35秒前
大模型应助saywhy采纳,获得10
37秒前
3sigma完成签到,获得积分10
38秒前
浮游应助科研通管家采纳,获得10
39秒前
吴彦祖应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
充电宝应助科研通管家采纳,获得10
39秒前
39秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
吴彦祖应助科研通管家采纳,获得10
39秒前
49秒前
jjyy发布了新的文献求助10
53秒前
56秒前
58秒前
59秒前
一个冷漠无情的人完成签到,获得积分10
1分钟前
唠叨的妙梦完成签到,获得积分10
1分钟前
hx完成签到 ,获得积分10
1分钟前
leec完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498185
求助须知:如何正确求助?哪些是违规求助? 4595509
关于积分的说明 14449204
捐赠科研通 4528187
什么是DOI,文献DOI怎么找? 2481411
邀请新用户注册赠送积分活动 1465554
关于科研通互助平台的介绍 1438297