Simultaneous Energy Harvesting and Gait Recognition Using Piezoelectric Energy Harvester

能量收集 步态 计算机科学 预处理器 可穿戴计算机 能量(信号处理) 人工智能 模拟 嵌入式系统 数学 物理医学与康复 统计 医学
作者
Dong Ma,Guohao Lan,Weitao Xu,Mahbub Hassan,Wen Hu
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:21 (6): 2198-2209 被引量:26
标识
DOI:10.1109/tmc.2020.3035045
摘要

Piezoelectric energy harvester (PEH), which generates electricity from stress or vibrations, is attracting tremendous attention as a viable solution to extend battery life of wearable devices. More interestingly, besides the energy harvesting capability, recent research has demonstrated the feasibility of leveraging PEH as an power-free sensor for gait recognition as its stress or vibration patters are significantly influenced by the gait. However, as PEHs are not designed for precise motion sensing, the gait recognition accuracy remains low with conventional classification algorithms. The accuracy deteriorates further when the generated electricity is stored simultaneously. In this work, to achieve high performance gait recognition and efficient energy harvesting at the same time, we make two distinct contributions. First, we propose a preprocessing algorithm to filter out the effect of energy storage on PEH electricity signals. Second, we propose long short-term memory (LSTM) network-based classifiers to accurately capture temporal information in gait-induced electricity generation. We prototype the proposed gait recognition architecture in the form factor of an insole and evaluate its gait recognition as well as energy harvesting performance with 20 subjects. Our results show that the proposed architecture detects human gait with 12 percent higher recall and harvests up to 127 percent more energy while consuming 38 percent less power compared to the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
米夏完成签到 ,获得积分10
3秒前
意忆完成签到,获得积分10
3秒前
烬屋藏娇完成签到,获得积分10
4秒前
优秀的寄容完成签到,获得积分20
7秒前
追寻的山晴应助孙卫平采纳,获得10
9秒前
bkagyin应助精明曲奇采纳,获得10
10秒前
wanci应助害羞的盼海采纳,获得10
10秒前
14秒前
16秒前
17秒前
18秒前
20秒前
22秒前
共享精神应助Remote采纳,获得10
24秒前
24秒前
Ava应助chen采纳,获得10
25秒前
momo发布了新的文献求助10
25秒前
26秒前
俏皮妙芹完成签到 ,获得积分10
28秒前
556677y发布了新的文献求助10
28秒前
害羞的盼海完成签到,获得积分10
29秒前
31秒前
32秒前
李健的粉丝团团长应助lz采纳,获得10
33秒前
34秒前
Nayuta48完成签到,获得积分10
38秒前
chen发布了新的文献求助10
38秒前
妖孽的二狗完成签到 ,获得积分10
39秒前
wyq发布了新的文献求助10
42秒前
48秒前
49秒前
小白兔完成签到,获得积分10
52秒前
52秒前
干雅柏发布了新的文献求助10
53秒前
uki发布了新的文献求助10
54秒前
55秒前
orixero应助科研通管家采纳,获得10
56秒前
852应助科研通管家采纳,获得10
56秒前
二大爷发布了新的文献求助10
56秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267632
求助须知:如何正确求助?哪些是违规求助? 2907088
关于积分的说明 8340578
捐赠科研通 2577809
什么是DOI,文献DOI怎么找? 1401227
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 633974