Mapping crop stand count and planting uniformity using high resolution imagery in a maize crop

播种 精准农业 作物 聚类分析 农业工程 像素 分割 数学 环境科学 农学 农业 计算机科学 统计 人工智能 工程类 地理 生物 考古
作者
Alimohammad Shirzadifar,Mohammadmehdi Maharlooei,Sreekala G. Bajwa,Peter G. Oduor,John Nowatzki
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:200: 377-390 被引量:25
标识
DOI:10.1016/j.biosystemseng.2020.10.013
摘要

The accurate evaluation of maize plants' uniformity aligned with an effective improvement in germination and biomass assessment is of paramount importance for farmers. Early detection of stand count provides details on uneven emergence for farmers to make a prompt decision for replanting and applying proper agricultural inputs at defective zones. However, conventional, ground-based stand count methods are costly, time-intensive, and the accuracy of the counting method heavily depends on the selected area. This study focuses on validating the potential application of high resolution unmanned aerial vehicle (UAV) images for detecting the total number of maize plants and stand uniformity soon after maize germination. A field experiment was conducted to evaluate proper image processing algorithm for detecting the maize crop and calculating the distance between adjacent maize plants within a row. In the mosaicked images, the pixels including maize plants were segmented using two methods including excess green index (EXG) method and k-means clustering-segmentation technique. The mean accuracy using EXG method was 46%, however, the k-means clustering-segmentation method satisfactorily identified plants with mean accuracy of 91% in the field. The planting uniformity of maize plants was also evaluated based on three indices including miss index, multiple index, and coefficient of precision. Results showed that plant stand assessment using mosaicked images was closer to the values set on the planting machine. The marginal discrepancy between estimated and observed plant stand count and other indices confirms the high accuracy of UAV mosaicked images in plant density estimation for growers to make appropriate management decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助现代的迎夏采纳,获得10
刚刚
VDC举报研友_Zbb4mZ求助涉嫌违规
1秒前
1秒前
热情睿渊完成签到,获得积分10
3秒前
小路完成签到,获得积分20
4秒前
4秒前
5秒前
5秒前
Bob222完成签到,获得积分10
6秒前
小路发布了新的文献求助10
7秒前
辰月贰拾发布了新的文献求助10
10秒前
zjk完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
杪111完成签到,获得积分10
16秒前
17秒前
111111发布了新的文献求助10
18秒前
xiaojie发布了新的文献求助10
18秒前
陈秋发布了新的文献求助10
19秒前
文茵完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
Yoke发布了新的文献求助10
22秒前
所所应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
23秒前
save发布了新的文献求助10
23秒前
flawless完成签到,获得积分10
23秒前
今后应助昏睡的抹茶饼干采纳,获得10
23秒前
朴实的小萱完成签到 ,获得积分10
26秒前
26秒前
愿学的都会完成签到,获得积分10
26秒前
27秒前
科研通AI6应助111111采纳,获得10
27秒前
科研通AI5应助xieyuanxing采纳,获得10
27秒前
Jannie发布了新的文献求助30
27秒前
传奇3应助王松桐采纳,获得10
29秒前
30秒前
xiaojie完成签到,获得积分10
31秒前
狗东西发布了新的文献求助30
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601531
求助须知:如何正确求助?哪些是违规求助? 4011197
关于积分的说明 12418641
捐赠科研通 3691181
什么是DOI,文献DOI怎么找? 2034916
邀请新用户注册赠送积分活动 1068216
科研通“疑难数据库(出版商)”最低求助积分说明 952765