亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mapping crop stand count and planting uniformity using high resolution imagery in a maize crop

播种 精准农业 作物 聚类分析 农业工程 像素 分割 数学 环境科学 农学 农业 计算机科学 统计 人工智能 工程类 地理 生物 考古
作者
Alimohammad Shirzadifar,Mohammadmehdi Maharlooei,Sreekala G. Bajwa,Peter G. Oduor,John Nowatzki
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:200: 377-390 被引量:25
标识
DOI:10.1016/j.biosystemseng.2020.10.013
摘要

The accurate evaluation of maize plants' uniformity aligned with an effective improvement in germination and biomass assessment is of paramount importance for farmers. Early detection of stand count provides details on uneven emergence for farmers to make a prompt decision for replanting and applying proper agricultural inputs at defective zones. However, conventional, ground-based stand count methods are costly, time-intensive, and the accuracy of the counting method heavily depends on the selected area. This study focuses on validating the potential application of high resolution unmanned aerial vehicle (UAV) images for detecting the total number of maize plants and stand uniformity soon after maize germination. A field experiment was conducted to evaluate proper image processing algorithm for detecting the maize crop and calculating the distance between adjacent maize plants within a row. In the mosaicked images, the pixels including maize plants were segmented using two methods including excess green index (EXG) method and k-means clustering-segmentation technique. The mean accuracy using EXG method was 46%, however, the k-means clustering-segmentation method satisfactorily identified plants with mean accuracy of 91% in the field. The planting uniformity of maize plants was also evaluated based on three indices including miss index, multiple index, and coefficient of precision. Results showed that plant stand assessment using mosaicked images was closer to the values set on the planting machine. The marginal discrepancy between estimated and observed plant stand count and other indices confirms the high accuracy of UAV mosaicked images in plant density estimation for growers to make appropriate management decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玉灵子发布了新的文献求助10
16秒前
上官若男应助玉灵子采纳,获得10
25秒前
无花果应助zizideng采纳,获得10
46秒前
NexusExplorer应助科研通管家采纳,获得10
51秒前
51秒前
56秒前
zizideng发布了新的文献求助10
1分钟前
zizideng完成签到,获得积分10
1分钟前
h0jian09完成签到,获得积分10
1分钟前
爆米花应助zhangxiaoqing采纳,获得10
1分钟前
小二郎应助达西苏采纳,获得10
2分钟前
2分钟前
笑傲完成签到,获得积分10
2分钟前
2分钟前
2分钟前
zhangxiaoqing发布了新的文献求助10
2分钟前
2分钟前
达西苏发布了新的文献求助10
2分钟前
达西苏完成签到,获得积分10
3分钟前
激动的似狮完成签到,获得积分0
3分钟前
量子星尘发布了新的文献求助10
3分钟前
小青椒应助霸气面包采纳,获得10
3分钟前
pups发布了新的文献求助10
4分钟前
4分钟前
wmm完成签到,获得积分10
4分钟前
Jasper应助pups采纳,获得20
4分钟前
Wei发布了新的文献求助20
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
不如看海完成签到 ,获得积分10
4分钟前
orixero应助科研通管家采纳,获得10
4分钟前
Lucas应助科研通管家采纳,获得10
4分钟前
4分钟前
科研通AI6应助信陵君无忌采纳,获得10
5分钟前
原子超人完成签到,获得积分10
5分钟前
wanci应助ma采纳,获得10
5分钟前
6分钟前
ma发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
支雨泽完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671275
求助须知:如何正确求助?哪些是违规求助? 4913655
关于积分的说明 15134379
捐赠科研通 4830066
什么是DOI,文献DOI怎么找? 2586738
邀请新用户注册赠送积分活动 1540332
关于科研通互助平台的介绍 1498523