已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mapping crop stand count and planting uniformity using high resolution imagery in a maize crop

播种 精准农业 作物 聚类分析 农业工程 像素 分割 数学 环境科学 农学 农业 计算机科学 统计 人工智能 工程类 地理 生物 考古
作者
Alimohammad Shirzadifar,Mohammadmehdi Maharlooei,Sreekala G. Bajwa,Peter G. Oduor,John Nowatzki
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:200: 377-390 被引量:25
标识
DOI:10.1016/j.biosystemseng.2020.10.013
摘要

The accurate evaluation of maize plants' uniformity aligned with an effective improvement in germination and biomass assessment is of paramount importance for farmers. Early detection of stand count provides details on uneven emergence for farmers to make a prompt decision for replanting and applying proper agricultural inputs at defective zones. However, conventional, ground-based stand count methods are costly, time-intensive, and the accuracy of the counting method heavily depends on the selected area. This study focuses on validating the potential application of high resolution unmanned aerial vehicle (UAV) images for detecting the total number of maize plants and stand uniformity soon after maize germination. A field experiment was conducted to evaluate proper image processing algorithm for detecting the maize crop and calculating the distance between adjacent maize plants within a row. In the mosaicked images, the pixels including maize plants were segmented using two methods including excess green index (EXG) method and k-means clustering-segmentation technique. The mean accuracy using EXG method was 46%, however, the k-means clustering-segmentation method satisfactorily identified plants with mean accuracy of 91% in the field. The planting uniformity of maize plants was also evaluated based on three indices including miss index, multiple index, and coefficient of precision. Results showed that plant stand assessment using mosaicked images was closer to the values set on the planting machine. The marginal discrepancy between estimated and observed plant stand count and other indices confirms the high accuracy of UAV mosaicked images in plant density estimation for growers to make appropriate management decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
觅柔发布了新的文献求助10
刚刚
叫我富婆儿完成签到,获得积分10
1秒前
2秒前
灰色与青发布了新的文献求助10
2秒前
4秒前
陈道哥完成签到 ,获得积分10
6秒前
6秒前
6秒前
阿俊1212发布了新的文献求助10
7秒前
7秒前
王顺扬发布了新的文献求助10
7秒前
骆如雪完成签到,获得积分10
7秒前
CooDemon完成签到,获得积分20
8秒前
Q哈哈哈发布了新的文献求助10
8秒前
chuanyongcui发布了新的文献求助10
9秒前
juzitinghai完成签到,获得积分10
9秒前
CooDemon发布了新的文献求助10
11秒前
11秒前
灰色与青发布了新的文献求助10
12秒前
13秒前
觅柔完成签到,获得积分10
13秒前
yu完成签到,获得积分10
14秒前
14秒前
14秒前
两千完成签到,获得积分10
16秒前
17秒前
19秒前
廖其琪发布了新的文献求助10
19秒前
RAY1发布了新的文献求助10
20秒前
21秒前
冰棒比冰冰完成签到 ,获得积分10
22秒前
笨笨念文完成签到 ,获得积分10
22秒前
芜湖发布了新的文献求助10
22秒前
NexusExplorer应助Nature_Science采纳,获得10
23秒前
zhan20200503完成签到,获得积分10
23秒前
lay完成签到,获得积分10
25秒前
25秒前
木鱼大呆完成签到,获得积分10
26秒前
26秒前
长情无心完成签到,获得积分10
27秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384801
求助须知:如何正确求助?哪些是违规求助? 4507584
关于积分的说明 14028551
捐赠科研通 4417311
什么是DOI,文献DOI怎么找? 2426403
邀请新用户注册赠送积分活动 1419155
关于科研通互助平台的介绍 1397485