A numerical simulation method for bionic fish self-propelled swimming under control based on deep reinforcement learning

变形 计算机科学 弹道 离散化 运动学 联轴节(管道) 过程(计算) 模拟 人工智能 数学 物理 经典力学 工程类 数学分析 机械工程 操作系统 天文
作者
Yan Lang,Xinghua Chang,Runyu Tian,Nianhua Wang,Laiping Zhang,Wei Liu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:234 (17): 3397-3415 被引量:19
标识
DOI:10.1177/0954406220915216
摘要

In order to simulate the under control self-propelled swimming of bionic fishes, a coupling method of hydrodynamics/kinematics/motion-control is presented in this paper. The Navier-Stokes equations in the arbitrary Lagrangian-Eulerian framework are solved in parallel based on the computational domain decomposition to simulate the unsteady flow field efficiently. The flow dynamics is coupled with the fish dynamics in an implicit way by a dual-time stepping approach. In order to discretize the computational domain during a wide range maneuver, an overset grid approach with a parallel implicit hole-cutting technique is adopted and coupled with morphing hybrid grids around the undulation body. The motion control of the fish swimming is realized by a deep reinforcement learning algorithm, which makes the fish model choose proper undulation manner according to a specific purpose. By adding random disturbances in the training process of fish swimming along a straight line, a simplified two-dimensional fish model obtains the ability to swim along a specific trajectory. Then in subsequent tests, the two-dimensional fish model is able to swim along more complex curves with obstacles. Finally, the starting process of a three-dimensional tuna-like model is simulated preliminarily to validate the ability of the coupling method for three-dimensional complex configurations. The numerical results demonstrate that this study could be used to explore the swimming mechanism of fishes in complex environments and to guide how robotic fishes can be controlled to accomplish their tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Alex完成签到,获得积分10
1秒前
暴躁的眼神完成签到,获得积分10
2秒前
害羞外套发布了新的文献求助10
4秒前
6秒前
量子星尘发布了新的文献求助30
9秒前
Ava应助吃猫的鱼采纳,获得10
9秒前
ywc发布了新的文献求助10
10秒前
10秒前
10秒前
整齐半青完成签到 ,获得积分10
10秒前
moodys完成签到,获得积分10
11秒前
napnap完成签到 ,获得积分10
12秒前
材化小将军完成签到,获得积分0
14秒前
传奇3应助zhouleiwang采纳,获得10
14秒前
17秒前
风清扬发布了新的文献求助10
17秒前
Lucas应助barretace采纳,获得10
19秒前
粉面菜蛋完成签到,获得积分10
19秒前
23秒前
23秒前
27秒前
8564523完成签到,获得积分10
27秒前
27秒前
李钧鹏发布了新的文献求助10
29秒前
29秒前
lily发布了新的文献求助10
29秒前
小薇薇爱做梦完成签到,获得积分10
29秒前
30秒前
三四完成签到 ,获得积分10
32秒前
小二郎应助吃猫的鱼采纳,获得10
33秒前
俊逸的康乃馨完成签到 ,获得积分10
34秒前
bakbak完成签到,获得积分10
34秒前
欢呼凡旋发布了新的文献求助10
35秒前
xx发布了新的文献求助10
35秒前
35秒前
EthanChan完成签到,获得积分10
36秒前
36秒前
不信人间有白头完成签到 ,获得积分10
37秒前
38秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023806
求助须知:如何正确求助?哪些是违规求助? 3563777
关于积分的说明 11343658
捐赠科研通 3295140
什么是DOI,文献DOI怎么找? 1814969
邀请新用户注册赠送积分活动 889599
科研通“疑难数据库(出版商)”最低求助积分说明 813041