A numerical simulation method for bionic fish self-propelled swimming under control based on deep reinforcement learning

变形 计算机科学 弹道 离散化 运动学 联轴节(管道) 过程(计算) 模拟 人工智能 数学 物理 经典力学 工程类 数学分析 机械工程 天文 操作系统
作者
Yan Lang,Xinghua Chang,Runyu Tian,Nianhua Wang,Laiping Zhang,Wei Liu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:234 (17): 3397-3415 被引量:19
标识
DOI:10.1177/0954406220915216
摘要

In order to simulate the under control self-propelled swimming of bionic fishes, a coupling method of hydrodynamics/kinematics/motion-control is presented in this paper. The Navier-Stokes equations in the arbitrary Lagrangian-Eulerian framework are solved in parallel based on the computational domain decomposition to simulate the unsteady flow field efficiently. The flow dynamics is coupled with the fish dynamics in an implicit way by a dual-time stepping approach. In order to discretize the computational domain during a wide range maneuver, an overset grid approach with a parallel implicit hole-cutting technique is adopted and coupled with morphing hybrid grids around the undulation body. The motion control of the fish swimming is realized by a deep reinforcement learning algorithm, which makes the fish model choose proper undulation manner according to a specific purpose. By adding random disturbances in the training process of fish swimming along a straight line, a simplified two-dimensional fish model obtains the ability to swim along a specific trajectory. Then in subsequent tests, the two-dimensional fish model is able to swim along more complex curves with obstacles. Finally, the starting process of a three-dimensional tuna-like model is simulated preliminarily to validate the ability of the coupling method for three-dimensional complex configurations. The numerical results demonstrate that this study could be used to explore the swimming mechanism of fishes in complex environments and to guide how robotic fishes can be controlled to accomplish their tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daidai完成签到,获得积分10
1秒前
1秒前
辛勤凝丝发布了新的文献求助10
2秒前
3秒前
FashionBoy应助枭94采纳,获得10
4秒前
StarChen完成签到,获得积分10
5秒前
yao完成签到 ,获得积分10
5秒前
小羊完成签到,获得积分10
6秒前
哈哈哈发布了新的文献求助10
6秒前
7秒前
无限草丛完成签到,获得积分10
7秒前
8秒前
雨恋凡尘完成签到,获得积分0
9秒前
1中蓝完成签到 ,获得积分10
10秒前
蝈蝈完成签到,获得积分10
10秒前
阳静发布了新的文献求助10
11秒前
谨慎傲晴发布了新的文献求助30
12秒前
快乐的元霜完成签到,获得积分10
13秒前
鹿友绿发布了新的文献求助10
13秒前
13秒前
隐形曼青应助Ra1n采纳,获得30
15秒前
小白完成签到,获得积分10
15秒前
15秒前
香蕉觅云应助superworm1采纳,获得10
16秒前
立青发布了新的文献求助10
16秒前
今后应助ssss采纳,获得10
18秒前
浮游应助zhuh采纳,获得10
18秒前
生活的狗发布了新的文献求助10
19秒前
宋虹发布了新的文献求助10
19秒前
枭94发布了新的文献求助10
19秒前
殷勤的紫槐应助ccq采纳,获得200
20秒前
乐茵完成签到,获得积分20
20秒前
微笑芒果完成签到 ,获得积分0
21秒前
科研通AI6应助灵巧大地采纳,获得10
22秒前
22秒前
浮游应助遮宁采纳,获得10
25秒前
25秒前
df完成签到 ,获得积分10
25秒前
李欣纾发布了新的文献求助10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565388
求助须知:如何正确求助?哪些是违规求助? 4650379
关于积分的说明 14690990
捐赠科研通 4592263
什么是DOI,文献DOI怎么找? 2519544
邀请新用户注册赠送积分活动 1491994
关于科研通互助平台的介绍 1463199