3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage

材料科学 化学工程 离子 超短脉冲 锂(药物) 碳纤维 纳米技术 光学 复合材料 复合数 有机化学 冶金 激光器 内分泌学 工程类 化学 物理 医学
作者
Peng Zhang,Razium Ali Soomro,Zhaoruxin Guan,Ning Sun,Bin Xu
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:29: 163-171 被引量:213
标识
DOI:10.1016/j.ensm.2020.04.016
摘要

MXenes have recently emerged as a promising candidate for energy storage devices due to their high volumetric capacitance and robust energy profile. However, MXenes are prone to surface oxidation and layer re-stacking, which compromise their practical applications in energy storage. Here, we propose a simple approach to directly transform 2D T3C2Tx MXene nanosheets into 3D carbon-coated T3C2Tx architecture. The nanohybrid was synthesized by achieving self-polymerization of dopamine over the surface of pristine Ti3C2Tx nanosheets followed by freeze-drying and carbonization under an inert air atmosphere. The self-polymerization of dopamine not only facilitated the transformation of 2D Ti3C2Tx sheets into 3D tremella-like architecture, but its subsequent carbonization resulted in complete coverage of a thin carbon coating that preserves the structure from both air-oxidation and structural aggregation. The 3D tremella-like architecture ([email protected]) with active and stable surface-facets facilitated fast charge transportation, ultrahigh capacity, superior rate performance, and long cyclability when being used as anode material for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). In the case of LIBs, the [email protected] exhibited a high capacity of 499.4 ​mA ​h g−1 at 0.2 ​C and 101.5 ​mA ​h g−1 at 100 ​C. Whereas, a high capacity of 257.6 ​mA ​h g−1 at 0.05 ​A ​g−1 after 200 cycles and 77.8 ​mA ​h g−1 at 10 ​A ​g−1 were obtained for SIBs, respectively. In addition, long cycle durability with a capacity retention of 91.7% at 1 ​A ​g−1 after 3000 cycles with a 0.00277% decay per cycle was achieved, endowing [email protected] capability to serve as a prospective hybrid for the energy applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丰知然应助jzh6666采纳,获得10
1秒前
来栖完成签到 ,获得积分10
1秒前
wk发布了新的文献求助20
2秒前
田様应助kk采纳,获得10
3秒前
个性毛衣完成签到,获得积分20
3秒前
4秒前
8秒前
後知後孓完成签到,获得积分10
8秒前
纯洁发布了新的文献求助10
9秒前
斯蒂芬库外完成签到,获得积分10
10秒前
後知後孓发布了新的文献求助10
10秒前
简单的沛蓝完成签到 ,获得积分10
15秒前
16秒前
深情安青应助Tigher采纳,获得20
16秒前
好好学习完成签到,获得积分10
16秒前
Ap关注了科研通微信公众号
16秒前
cleverHH完成签到,获得积分10
17秒前
科研通AI2S应助妮妮采纳,获得10
17秒前
哇哈哈哈完成签到,获得积分10
18秒前
开心完成签到 ,获得积分10
20秒前
21秒前
22秒前
ma完成签到,获得积分10
22秒前
宗师算个瓢啊完成签到 ,获得积分10
22秒前
23秒前
lss完成签到,获得积分10
25秒前
陌陌发布了新的文献求助10
25秒前
白蓝红发布了新的文献求助10
29秒前
29秒前
31秒前
叶夜南完成签到 ,获得积分10
32秒前
yingtiao完成签到 ,获得积分10
33秒前
Melodrama完成签到,获得积分10
36秒前
Hannah完成签到,获得积分10
36秒前
慕青应助林lin采纳,获得10
36秒前
Ap发布了新的文献求助10
36秒前
38秒前
孤独麦片完成签到,获得积分10
38秒前
dounai完成签到,获得积分10
41秒前
KingslayerCris完成签到,获得积分10
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312233
求助须知:如何正确求助?哪些是违规求助? 2944813
关于积分的说明 8521583
捐赠科研通 2620532
什么是DOI,文献DOI怎么找? 1432912
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650131