Making the Subjective Objective: Machine Learning and Rhinoplasty

医学 鼻整形术 排名(信息检索) 人工智能 队列 机器学习 卷积神经网络 图表 外科 统计 计算机科学 鼻子 内科学 数学
作者
Robert Dorfman,Irene Chang,Sean Saadat,Jason Roostaeian
出处
期刊:Aesthetic Surgery Journal [Oxford University Press]
卷期号:40 (5): 493-498 被引量:42
标识
DOI:10.1093/asj/sjz259
摘要

Abstract Background Machine learning represents a new frontier in surgical innovation. The ranking Convolutional Neural Network (CNN) is a novel machine learning algorithm that helps elucidate patterns and features of aging that are not always appreciable with the human eye. Objectives The authors sought to determine the impact of aesthetic rhinoplasty on facial aging employing a multidimensional facial recognition and comparison software. Methods A retrospective chart review and subsequent analysis was carried out on all female patients who underwent open rhinoplasty with the senior author from 2014 through 2018 and had postoperative photos at 12 or more weeks follow-up. All photos were analyzed with Microsoft Azure Face API (Redmond, WA), which estimates patients’ age by cropping the face from a photograph and then extracting a CNN-based prediction through multiple deep neural networks. Results A total of 100 patients ultimately met full inclusion criteria. The average post-surgical follow up for this cohort was 29 weeks (median, 14 weeks; range, 12-64 weeks). Patients ranged from 16 to 72 years old (mean, 32.75 years; median, 28.00 years; standard deviation, 12.79 years). The ranking CNN algorithm on average estimated patients preoperatively to be 0.03 years older than their actual age. The correlation coefficient between actual age and predicted preoperative age was r = 0.91. On average, patients were found to look younger post-open rhinoplasty (−3.10 vs 0.03 years, P < 0.0001). Conclusions The ranking CNN algorithm is both accurate and precise in estimating human age before and after cosmetic rhinoplasty. Given the resulting data, the effects of open rhinoplasty on reversing signs of facial aging should be revisited. Level of Evidence: 4

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀服饰完成签到 ,获得积分10
1秒前
CR7完成签到,获得积分10
2秒前
深情安青应助11采纳,获得10
4秒前
脑洞疼应助yaya采纳,获得10
4秒前
超帅的樱发布了新的文献求助10
5秒前
乐南完成签到,获得积分10
8秒前
小富婆完成签到,获得积分10
8秒前
加油发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
JPH1990应助Ambition采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
11秒前
916应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
科研通AI5应助大胆吐司采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
wkjfh应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
wyw完成签到,获得积分10
13秒前
星辰大海应助科研通管家采纳,获得30
13秒前
8R60d8应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得20
13秒前
wpeng326完成签到,获得积分20
13秒前
大模型应助科研通管家采纳,获得10
13秒前
子车茗应助科研通管家采纳,获得20
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
残幻应助科研通管家采纳,获得10
13秒前
残幻应助科研通管家采纳,获得10
14秒前
残幻应助科研通管家采纳,获得10
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427