腺苷
腺苷激酶
药理学
细胞内
受体
细胞外
体内
核苷
腺苷受体
化学
细胞生物学
生物化学
生物
腺苷脱氨酶
兴奋剂
生物技术
作者
Elizabeth A. Kowaluk,Shripad S. Bhagwatt,Michael F. Jarvis
标识
DOI:10.2174/138161280405221010163056
摘要
Abstract: Adenosine (ADO) is an endogenous modulator of intercellular signaling that provides homeostatic reductions in cell excitability during tissue stress and trauma. The inhibitory actions of ADO are mediated by interactions with specific cell-surface G protein coupled receptors regulating membrane cation flux, polarization, and the release of excitatory neurotransmitters. ADO kinase (AK; EC 2.7.1.20) is the key intracellular enzyme regulating intra- and extracellular ADO concentrations. Inhibition of AK produces marked increases in extracellular ADO levels that are localized to cells and tissues undergoing accelerated ADO release. Thus AK inhibiton represents a mechanism to selectively enhance the protective actions of ADO during tissue trauma without producing the nonspecific effects associated with the systemic administration of ADO receptor agonists. During the last 10 years, specific inhibitors of AK based on the endogenous purine nucleoside substrate, ADO, have been developed. Potent AK inhibitors have recently been synthesized that demonstrate high specificity for this enzyme as compared to other ADO metabolic enzymes, transporters, and receptors. In both in vitro and in vivo models, AK inhibitors have been shown to potently increase ADO concentrations in a tissue and event specific fashion and to demonstrate potential clinical utility in animal models of epilepsy, ischemia, pain, and inflammation. AK inhibitors have demonstrated superior efficacy in these models as compared to other mechanisms of modulating ADO availability, and these agents exhibit reduced side-effect liabilities compared to direct acting ADO receptor agonists. The preclinical profile of AK inhibitors indicate that these agents may have therapeutic utility in a variety of central and peripheral diseases associated with cellular trauma and inflammation. Clinical trials are currently underway to evaluate the efficacy of AK inhibitors in seizure disorders and pain.
科研通智能强力驱动
Strongly Powered by AbleSci AI