Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems

计算机科学 优化算法 放牧 算法 蜜蜂算法 最优化问题 水准点(测量) 数学优化 元启发式 元优化 数学 大地测量学 林业 地理
作者
Farid MiarNaeimi,Gholamreza Azizyan,Mohsen Rashki
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:213: 106711-106711 被引量:296
标识
DOI:10.1016/j.knosys.2020.106711
摘要

This paper proposes a new meta-heuristic algorithm inspired by horses’ herding behavior for high-dimensional optimization problems. This method, called the Horse herd Optimization Algorithm (HOA), imitates the social performances of horses at different ages using six important features: grazing, hierarchy, sociability, imitation, defense mechanism and roam. The HOA algorithm is created based on these behaviors, which has not existed in the history of studies so far. A sensitivity analysis is also performed to obtain the best values of coefficients used in the algorithm. HOA has a very good performance in solving complex problems in high dimensions, due to the large number of control parameters based on the behavior of horses at different ages. The proposed algorithm is compared with popular nature-inspired optimization algorithms, including grasshopper optimization algorithm (GOA), sine cosine algorithm (SCA), multi-verse optimizer (MVO), moth–flame optimizer (MFO), dragonfly algorithm (DA), and grey​ wolf optimizer (GWO). Solving several high-dimensional benchmark functions (up to 10,000 dimensions) shows that the proposed algorithm is highly efficient for high-dimensional global optimization problems. The HOA algorithm also outperforms the mentioned popular optimization algorithms for the case of accuracy and efficiency with lowest computational cost and complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助orange采纳,获得30
刚刚
guoyanna完成签到,获得积分10
刚刚
1秒前
huzj完成签到,获得积分10
1秒前
Clara凤发布了新的文献求助30
1秒前
1秒前
Luo完成签到,获得积分10
1秒前
zyz1998发布了新的文献求助30
2秒前
2秒前
科研通AI5应助qsq采纳,获得10
2秒前
ymmmjjd完成签到,获得积分10
3秒前
赵焱峥完成签到,获得积分10
3秒前
科研通AI5应助LAFF采纳,获得10
3秒前
疯狂的元风完成签到 ,获得积分10
3秒前
DQQ完成签到,获得积分10
3秒前
4秒前
一只鱼的故事完成签到,获得积分10
4秒前
海莲完成签到,获得积分10
4秒前
Liskiat2021完成签到,获得积分10
4秒前
4秒前
5秒前
CT民工完成签到,获得积分10
5秒前
大方若山完成签到,获得积分10
6秒前
科研通AI5应助Wangboyang采纳,获得10
6秒前
7秒前
7秒前
不安雁菱发布了新的文献求助10
7秒前
8秒前
cheng发布了新的文献求助10
8秒前
爱笑的不评完成签到,获得积分10
8秒前
9秒前
9秒前
好好好好好完成签到,获得积分10
9秒前
太叔从蓉完成签到 ,获得积分10
9秒前
梧桐雨210发布了新的文献求助10
10秒前
11秒前
zhang发布了新的文献求助10
11秒前
11秒前
ding应助明天会更美好采纳,获得10
11秒前
等待若烟完成签到 ,获得积分10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767607
求助须知:如何正确求助?哪些是违规求助? 3312246
关于积分的说明 10162904
捐赠科研通 3027595
什么是DOI,文献DOI怎么找? 1661595
邀请新用户注册赠送积分活动 794164
科研通“疑难数据库(出版商)”最低求助积分说明 756002