First-principles study of acceptor Li/Ag/Cu doping and Zn vacancy on the magnetic mechanism of ZnO and the universality of itinerant electrons

材料科学 赝势 兴奋剂 铁磁性 凝聚态物理 电子 密度泛函理论 普遍性(动力系统) 离子 空位缺陷 接受者 磁性半导体 化学物理 物理 量子力学
作者
Qingyu Hou,Shulin Sha
出处
期刊:Materials today communications [Elsevier BV]
卷期号:26: 101944-101944 被引量:2
标识
DOI:10.1016/j.mtcomm.2020.101944
摘要

Li/Ag/Cu doping and Zn vacancies have been theoretically and experimentally shown to induce ZnO to have room-temperature ferromagnetism. However, the source and mechanism of magnetic properties of such doped systems remain unclear. Previous researchers believe that all oxygen ions are negative divalent ions, as the basic assumption of the double-exchange interaction model, but no reasonable theoretical explanation has been put forward. Experimental control of Zn vacancies in ZnO is also challenging, but first principles can solve such problems. In this work, based on the generalized gradient approximation plane wave ultrasoft pseudopotential + U method under the framework of spin density functional theory, we used first principles to study the effect of the magnetic source and mechanism of Li/Ag/Cu doping and Zn vacancy on ZnO. We found that in addition to O2– ions, some O1– ions also existed in all doping systems. These ions had the dual-nature universality of itinerant electrons (donors) and local electrons (acceptors). The itinerant electrons in the Zn14LiO16, Zn14AgO16, and Zn14CuO16 systems further possessed the same spin. Compared with Zn14LiO16, Zn14AgO16, and Zn14CuO16 systems under the same doping amount, our results showed that the magnetic properties of Zn28Li2O32, Zn28Ag2O32, and Zn28Cu2O32 systems all increased. The Zn28Li2O32 system was found to be highly advantageous as a ferromagnetic functional material, which can guide the study of the magnetic source and mechanism of ZnO and similar oxide semiconductors through itinerant electrons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
踏实的绝悟完成签到 ,获得积分10
1秒前
小苏苏发布了新的文献求助10
1秒前
1秒前
小马甲应助文献狂人采纳,获得10
2秒前
英姑应助zhhhhh采纳,获得10
3秒前
7777juju完成签到,获得积分10
3秒前
安寒完成签到,获得积分10
3秒前
钉钉发布了新的文献求助50
3秒前
Connie完成签到,获得积分10
4秒前
4秒前
善学以致用应助方子怡采纳,获得10
5秒前
5秒前
5秒前
GuoSiqi72应助lmr采纳,获得10
5秒前
wanci应助李建行采纳,获得10
5秒前
奋斗思柔发布了新的文献求助10
6秒前
慧子朱完成签到,获得积分20
6秒前
6秒前
情怀应助FF采纳,获得10
6秒前
6秒前
秀丽绿真发布了新的文献求助10
7秒前
7秒前
mia完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
bkagyin应助微笑的老五采纳,获得10
11秒前
打打应助Y.J采纳,获得10
11秒前
权_888发布了新的文献求助10
11秒前
LIU发布了新的文献求助20
11秒前
希望天下0贩的0应助zrz采纳,获得10
11秒前
可爱的函函应助陈峰琦采纳,获得10
11秒前
高洪杨完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Wolbachia-mediated fitness enhancement and reproductive manipulation in the South American tomato pinworm, Tuta absoluta 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098963
求助须知:如何正确求助?哪些是违规求助? 4311031
关于积分的说明 13433121
捐赠科研通 4138388
什么是DOI,文献DOI怎么找? 2267214
邀请新用户注册赠送积分活动 1270282
关于科研通互助平台的介绍 1206556